(නව නිර්දේශය / புதிய பாடத்திட்டம்/New Syllabus)

முன்று இ ලංකා විභාග දෙපා**ල්ලාල්ල කි.ගි. මිළා සිහලද පාල්ලින් මෙන්නුව**විතාන දෙපාර්තමේන්තුව இ ලංකා විභාග දෙපාර්තමේන්තුව திணைக்களாம் இலங்கைப் ப**ர**்ணத் திணைக்களும் இளங்கைப் பர்ட்சைத் திணைக்களாம். இலங்கைப் பர்ட்சைத் திணைக்களாம் ions, Sri Lanka Department **இதலங்கைப்: பரிவணிச்சுவ திணைம்க்கனாம்**ns, Sri Lanka Department of Examinations, Sri Lanka මෙන්තුව இ ලංකා විභාග දෙපාර්තමේන්තුව இ ලංකා විභාග දේපාර්තමේන්තුව යි. ලංකා විභාග දේපාර්තමේන්තුව இ ලංකා විභාග දේපාර්තමේන්තුව திணைக்களும் இலங்கை**ப் பர்**ட்சைத் திணைக்களும்

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

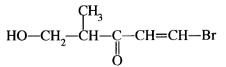
රසායන විදනව இரசாயனவியல் Chemistry

පැය දෙකයි இரண்டு மணித்தியாலம் Two hours

Instructions:

- Periodic Table is provided.
- This paper consists of 09 pages.
- Answer all the questions.
- Use of calculators is not allowed.
- Write your Index Number in the space provided in the answer sheet.
- Follow the instructions given on the back of the answer sheet carefully.
- In each of the questions 1 to 50, pick one of the alternatives from (1), (2), (3), (4), (5) which is correct or most appropriate and mark your response on the answer sheet with a cross (x) in accordance with the instructions given on the back of the answer sheet.

Universal gas constant $R = 8.314 \text{ J} \text{ K}^{-1} \text{ mol}^{-1}$ Avogadro constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$


Planck's constant $h = 6.626 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$ Velocity of light $c = 3 \times 10^8 \text{ m s}^{-1}$

- 1. Consider the following discoveries made with regard to the atomic structure.
 - I. Positive rays inside a cathode ray tube
 - II. Radioactivity by certain types of nuclei

The two scientists who discovered the above stated I and II respectively, are,

- (1) J. J. Thomson and Henry Becquerel
- (2) Eugen Goldstein and Robert Millikan
- (3) Henry Becquerel and Eugen Goldstein
- (4) J. J. Thomson and Ernest Rutherford
- (5) Eugen Goldstein and Henry Becquerel
- 2. The number of electrons in the manganese atom (Mn, Z = 25) that have quantum numbers l = 0 and $m_l = -1$ respectively are,
 - (1) 6 and 4
- (2) 8 and 12
- (3) 8 and 5
- (4) 8 and 6 ((5) 10 and 5
- 3. M is an element that belongs to the second period in the Periodic Table. It forms a covalent molecule MCl₃ which has a dipole moment. The group of the Periodic Table to which M belongs is,
 - (1) 2
- (2) 13
- (4) 15
- (5) 16
- 4. The number of unstable Lewis dot-dash structures that can be drawn for the peroxynitric acid molecule (formula HNO_4 , $H-\ddot{O}-\ddot{O}-\ddot{N}-\ddot{O}$) is,
 - (1) 1
- (2) 2
- (3) 3
- (4) 4
- (5) 5

- 5. The IUPAC name of the given compound is,
 - (1) 1-bromo-4-methyl-5-hydroxypent-1-en-3-one
 - (2) 5-bromo-1-hydroxy-2-methylpent-4-en-3-one
 - (3) 1-bromo-5-hydroxy-4-methylpent-1-en-3-one
 - (4) 5-bromo-2-methyl-3-oxopent-4-en-1-ol
 - (5) 1-bromo-4-methyl-3-oxopent-1-enol

6. The decreasing order of radii of the species O, O²⁻, F, F⁻, S²⁻, Cl⁻ is,

- (1) $S^{2-} > Cl^{-} > O^{2-} > F^{-} > O > F$
- (2) $S^{2-} > Cl^{-} > O^{2-} > F^{-} > F > O$
- (3) $Cl^- > S^{2-} > O^{2-} > F^- > O > F$
- (4) $Cl^- > S^{2-} > F^- > O^{2-} > O >$
- (5) $S^{2^{-}} > Cl^{-} > O^{2^{-}} > O > F^{-} >$

A rigid-closed container contains n_1 moles of an ideal gas at temperature $T_1(K)$ and pressure $P_1(Pa)$. When an additional amount of the gas was inserted into the container, the new temperature and pressure were T_2 and P_2 , respectively. The total number of moles of the gas now in the container is,

- (2) $\frac{n_1 T_1 P_2}{T_2 P_1}$ (3) $\frac{T_2 P_2}{n_1 T_1 P_2}$ (4) $\frac{n_1 T_2 P_2}{T_1 P_2}$

8. The total number of electrons exchanged in the reaction of the oxidation of ethanol (C₂H₅OH) to acetic acid (CH2COOH) using acidic K2Cr2O2 solution is,

- (1) 6
- (3) 10
- (5) 14

9. Which compound of the following, can undergo aldol condensation, when reacted with aqueous NaOH?

- (2) CH_3C-OCH_3 (3) $H-C-OCH_3$ (4) CH_3CH_2C-H (5) $(CH_3)_3CC-H$

10. AX(s), $A_2Y(s)$ and AZ(s) are sparingly soluble salts in water having K_{sp} values of 1.6×10^{-9} , 3.2×10^{-11} and 9.0×10^{-12} , respectively at 25 °C. Which of the following shows the order of the three saturated solutions of these salts in decreasing concentration of cation A+(aq), at 25 °C?

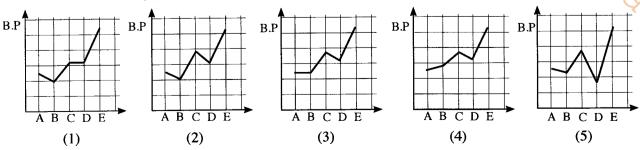
- (1) $AX(s) > A_2Y(s) > AZ(s)$
- (2) A₂Y(s) > AX(s) > AZ(s)
- (3) AX(s) > AZ(s) > A₂Y(s)
- AZ(s) > AX(s)(4) $A_{2}Y(s) >$
- (5) AZ(s) > A₂Y(s) > AX(s)

11. Consider the following compounds.

CH₃¢CH₂CH₂CH₂CH₂CHO CH₃¢CHO СН,СН,СН,СН,СН,ОН CH,CH,CH,CH,CH,CH, D E C

Relative molecular

mass


86

86

86

86

Variation of boiling points of these compounds is best shown by,

12.	The	increasing	order of	covalent	character	of th	e chemical	species	NaCl,	Na ₂ S,	KF	and	KCl	is,
-----	-----	------------	----------	----------	-----------	-------	------------	---------	-------	--------------------	----	-----	-----	-----

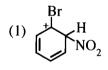
- (1) KF < NaCl < KCl < Na₂S
- (2) KCl < NaCl < KF < Na₂S
- (3) KF < KCl < NaCl < Na₂S
- (4) Na₂S < NaCl < KCl < KF
- (5) KF < Na₂S < NaCl < KCl
- 13. Standard combustion enthalpies of $H_2(g)$, C(s) and $CH_2OH(l)$ at 298 K are -286 kJ mol⁻¹, -393 kJ mol⁻¹ and -726 kJ mol⁻¹, respectively. Enthalpy of vaporization of CH₃OH(*l*) is +37 kJ mol⁻¹. Enthalpy of formation (kJ mol⁻¹) of one mole of gaseous CH₃OH at 298 K is,
 - (1) -276
- (2) -239
- (3) -202
- (5) +202
- 14. Phosphorous can be prepared in an electric furnace as given by the following balanced chemical equation.

$$2 \text{Ca}_3(\text{PO}_4)_2 + 6 \text{SiO}_2 + 10 \text{C} \rightarrow 6 \text{CaSiO}_3 + 10 \text{CO} + \text{P}_4$$

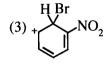
When 620 g of Ca₂(PO₄)₂, 180 g of SiO₂ and 96 g of C were reacted, 50 g of P₄ were obtained. Under these conditions, the limiting reagent (reagent that is completely consumed) and percentage yield of P₄ respectively are, (C = 12, O = 16, Si = 28, P = 31, Ca = 40)

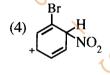
- (1) Ca₃(PO₄)₂ and 80.7%
- (2) SiO₂ and 80.7%

(3) C and 50.4%


- (5) C and 25.2%
- 15. Consider the following two equilibria occurring in two separate rigid-closed containers under the same conditions.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) ; K_{P_1} = 3.0 \times 10^{-4}$$

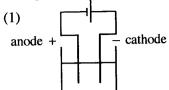

$$NH_3(g) + H_2S(g) \implies NH_4HS(g); K_{P_2} = 8.0 \times 10^{-4}$$

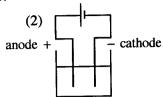

Under these conditions K_p for the equilibrium $2H_2S(g) + N_2(g) + 3H_2(g) \rightleftharpoons 2NH_4HS(g)$ is,

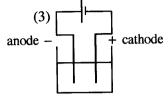
- (1) 5.76×10^{-12}
- (2) 7.2×10^{-10}
- (3) 1.92×10^{-8} (4) 3.40×10^{-6}
- (5) 3.75×10^{-2}
- 16. Consider the nitration reaction of bromobenzene. Resonance stabilized carbocation intermediates are formed during this reaction. Which of the following is not a resonance structure of these intermediates?

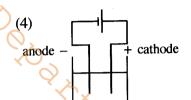
17. A reaction which is non-spontaneous at room temperature and 1 atm pressure becomes spontaneous at high temperature at the same pressure. Which of the following is correct for this reaction at room temperature? (Assume that ΔH and ΔS do not change with temperature and pressure.)

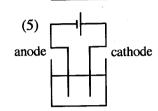
 ΔG


 ΔH


 ΔS


- (1) Positive
- Positive
- Positive
- (2) Positive
- Negative Negative
- (3) Positive
- Negative Positive


- (4) Negative Positive
- Negative
- (5) Negative
- Negative
- Negative
- 18. The de Broglie wavelength of a neutron travelling with a velocity v is λ . If the kinetic energy $E(E = \frac{1}{2}mv^2)$ of this neutron is increased four times, the new de Broglie wavelength would be,
- (2) $\underline{\lambda}$
- (3) 2λ
- (4) 4λ
- (5) 16λ


19. Which of the following correctly shows the electrolytic cell constructed for the electrolysis of an aqueous solution of the salt MX?

- 20. Which of the following statements is correct regarding the reaction between a carboxylic acid and an alcohol to give an ester?
 - (1) The overall reaction is a nucleophilic addition reaction of a carbonyl compound.
 - (2) It is a reaction in which the alcohol acts as a nucleophile.
 - (3) It is a reaction which occurs with the cleavage of the O-H bond of the carboxylic acid.
 - (4) It is a reaction which occurs with the cleavage of the C-O bond of the alcohol.
 - (5) It is an acid-base reaction.
- 21. Decomposition of 1 mol of CH₃OH(*l*) occurs at high temperatures as follows.

$$CH_3OH(l) \rightarrow CO(g) + 2H_2(g); \Delta H = +128 \text{ kJ}$$

Which of the following is incorrect for the above reaction? (H=1, C=12, O=16)

- (1) The heat absorbed when 1 mol of CH₃OH(g) is decomposed is less than 128 kJ.
- (2) Enthalpy of $CO(g) + 2H_2(g)$ is higher than the enthalpy of $CH_3OH(l)$.
- (3) 128 kJ of heat is released when 1 mol of CO(g) is formed.
- (4) 128 kJ of heat is absorbed during the decomposition of a mole of reactant.
- (5) 128 kJ of heat is absorbed when 32 g of products are formed.
- 22. Identify the incorrect statement from the following.
 - (1) Electron gain energy of nitrogen [N(g)] is positive.
 - (2) Dilution of BiCl₃(aq) solution with water gives a white precipitate.
 - (3) H₂S gas can act both as an oxidizing agent and a reducing agent.
 - (4) The effective nuclear charge (Z*) felt by a valence electron in He is less than 2.
 - (5) Aluminium is inert towards N₂ gas even when heated to a high temperature.
- 23. The concentration of a dilute aqueous solution of a weak acid HA is C mol dm⁻³ and its acid dissociation constant is K_a at 298 K. Which of the following expressions gives the pH of the solution at 298 K?

(1)
$$pH = \frac{1}{2}pK_a - \frac{1}{2}\log C$$

(2)
$$pH = -\frac{1}{2}pK_a - \frac{1}{2}\log C$$

(3)
$$pH = -\frac{1}{2}pK_a + \frac{1}{2}\log C$$

(4)
$$pH = -\frac{1}{2}pK_a - \frac{1}{2}\log(1/C)$$

(5)
$$pH = \frac{1}{2}pK_a - \frac{1}{2}\log(1/C)$$

24. The strength of a H₂O₂ solution can be expressed as the volume of O₂ produced at standard temperature and pressure (STP). For example, a litre of 20 volume strength H₂O₂ solution will produce 20 litres of O_2 gas at STP $(2 H_2 O_2(aq) \rightarrow 2 H_2 O(l) + O_2(g))$. (Assume that 1 mole of gas has 22.4 litres volume at STP.)

A bottle labelled X contains H₂O₂ solution. When 25.0 cm³ of solution X was titrated with 1.0 mol dm⁻³ KMnO₄ in the presence of dilute H₂SO₄ the volume required to reach the end point was 25.0 cm^3 . The volume strength of solution **X** is,

- (1) 15
- (2) 20
- (4) 28
- (5) 30

M(OH)₂(s) is a sparingly water soluble salt formed by the reaction between M²⁺(aq) and **25.** $OH^{-}(aq)$ ions at 298 K. The solubility (mol dm⁻³) of $M(OH)_{2}(s)$ in water at pH = 5 is, $(K_{\rm spM(OH)_2} = 4.0 \times 10^{-36} \text{ at } 298 \text{ K}).$

- (1) $\sqrt{2} \times 10^{-18}$
- (2) 2×10^{-18}
- (3) 1×10^{-18} (4) $\sqrt[3]{2} \times 10^{-12}$

26. Which of the following correctly denotes the standard galvanic cell constructed by using a standard hydrogen electrode, a standard Mg-electrode and a salt-bridge at 298 K?

- (1) $Mg(s) | Mg^{2+}(aq, 1.00 \text{ mol dm}^{-3}) | H^{+}(aq, 1.00 \text{ mol dm}^{-3}) | H_{2}(g) | Pt(s)$
- (2) $Pt(s) \mid H_2(g) \mid H^+(aq, 1.00 \text{ mol dm}^{-3}) \mid Mg^{2+}(aq, 1.00 \text{ mol dm}^{-3}) \mid Mg(s)$
- (3) Mg(s), Mg^{2+} (aq, 1.00 mol dm⁻³) $\|H^{+}$ (aq, 1.00 mol dm⁻³) $|H_{5}(g)|$ Pt(s)
- (4) Mg(s) $|Mg^{2+}$ (aq, 1.00 mol dm⁻³), H⁺(aq, 1.00 mol dm⁻³), H₃(g) |Pt(s)|
- (5) Pt(s), $H_2(g) \mid H^+(aq, 1.00 \text{ mol dm}^{-3}) \parallel Mg^{2+}(aq, 1.00 \text{ mol dm}^{-3})$, Mg(s)

27. The following procedure was carried out at 298 K to determine the distribution coefficient K_D of a monobasic organic acid between dichloromethane and water. 50.00 cm³ of a 0.20 mol dm⁻³ aqueous solution of acid were mixed vigorously with 10.00 cm³ of dichloromethane and the two layers were allowed to separate. Thereafter, the dichloromethane layer in the bottom of the flask was drained out. 10.00 cm³ of 0.02 mol dm⁻³ NaOH(aq) solution were required to neutralize the acid remaining in the aqueous layer. (Assume that the acid does not dimerize in the organic phase.) K_D of the acid between dichloromethane and water at 298 K is,

- (1) 0.05
- (2) 0.25
- (3) 4.00
- (4) 20.00
- (5) 245.00

28. A reaction $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$ occurs in a rigid-closed container at a given temperature. After a certain time, it was found that the rate of the reaction with respect to consumption of $C_2H_4(g)$ was x mol dm⁻³ s⁻¹. Which of the following shows the rates of consumption of $O_2(g)$, formation of $CO_2(g)$ and formation of $H_2O(g)$ respectively, during that time?

rate / mol dm⁻³ s⁻¹ $O_{2}(g)$ $CO_{\gamma}(g) H_{\gamma}O(g)$ (1) (2) (3) (4) **(5)** 3x2x2x

29. Consider the following reaction occurring in a rigid-closed container at temperature T.

$$\mathbf{M}(g) + \mathbf{Q}(g) \rightarrow \mathbf{R}(g) + \mathbf{Z}(g)$$

The rate of reaction doubled when the concentration of M was doubled. The rate of reaction is 5.00×10^{-4} mol dm⁻³ s⁻¹ when the concentrations of **M** and **Q** are 1.0×10^{-5} mol dm⁻³ and 2.0 mol dm⁻³ respectively. The rate constant of the reaction under these conditions is,

- (1) $2.5 \times 10^{-4} \,\mathrm{s}^{-1}$
- (2) 12.5 s^{-1}
- (3) 25 s⁻¹
- (4) $50 \,\mathrm{s}^{-1}$
- $(5) 500 \,\mathrm{s}^{-1}$

30. Consider the following reaction scheme.

$$\begin{array}{c}
\text{CO}_2\text{H} \\
\hline
\end{array}
\begin{array}{c}
\text{Cl}_2/\text{AlCl}_3 \\
\hline
\end{array}
\begin{array}{c}
\text{1. LiAlH}_4 \\
\hline
\end{array}
\begin{array}{c}
\text{2. H}^+/\text{H}_2\text{O}
\end{array}$$

P and Q respectively could be,

(1)
$$CO_2H$$
 CHO and CI

(2)
$$CO_2H$$
 and CH_2OH

$$(3) \quad \begin{array}{c} \text{COCl} & \text{CH}_2\text{C} \\ \end{array}$$
 and
$$\begin{array}{c} \text{CH}_2\text{C} \\ \end{array}$$

(5)
$$CO_2H$$
 CH_2OH and CI

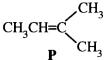
- For each of the questions 31 to 40, one or more responses out of the four responses (a), (b), (c) and (d) given is/are correct. Select the correct response/responses. In accordance with the instructions given on your answer sheet, mark
 - (1) if only (a) and (b) are correct.
 - (2) if only (b) and (c) are correct.
 - (3) if only (c) and (d) are correct.
 - (4) if only (d) and (a) are correct.
 - (5) if any other number or combination of responses is correct.

Summary of above Instructions

(1)	(2)	(3)	(4)	(5)
Only (a) and (b)	Only (b) and (c)	Only (c) and (d)	Only (d) and (a)	Any other number or combination of responses
are correct	are correct	are correct	are correct	is correct

- 31. Which of the following statement/s is/are correct with regard to 3d-block elements and their compounds?
 - (a) Among the 3d-block elements, Sc is not considered as a transition element.
 - (b) The radii of atoms (Sc to Cu) decrease from left to right.
 - (c) $[Ni(NH_3)_6]^{2+}$ is blue in colour whereas $[Zn(NH_3)_4]^{2+}$ is colourless.
 - (d) The IUPAC name of K₂NiCl₄ is dipotassium tetrachloronickelate(II).
- 32. Which statement/s is/are correct regarding the following molecule?

$$\begin{array}{ccc} H \\ H - C_{P} - O_{Q} - C_{R} = C_{S} - C_{T} = O_{U} \\ H & H_{V} \end{array}$$


- (a) Atoms labelled P, Q, R and S lie on a straight line.
- (b) Atoms labelled Q, R, S and T lie on a straight line.
- (c) Atoms labelled R, S, T, U and V lie on the same plane.
- (d) Atoms labelled R, S, T and U lie on a straight line.
- 33. 0.01 moles of $N_2(g)$, 0.10 moles of $H_2(g)$ and 0.40 moles of $NH_3(g)$ were inserted into a 1.0 dm³ rigid-closed container and allowed to reach equilibrium at 500 K as given below.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $K_C = 2.0 \times 10^2 \text{ mol}^{-2} \text{ dm}^6$

Which of the following statement/s is/are correct for the changes in the system from the initial stage to equilibrium? Q_C is the reaction quotient.

- (a) Initially $Q_C > K_C$; $NH_3(g)$ starts to produce $N_2(g)$ and $H_2(g)$ and the system reaches equilibrium.
- (b) Initially $Q_C < K_C$; $NH_3(g)$ starts to produce $N_2(g)$ and $H_2(g)$ and the system reaches equilibrium.
- (c) Initially $Q_C < K_C$; $N_2(g)$ and $H_2(g)$ react to form $NH_3(g)$ and the system reaches equilibrium.
- (d) Initially $Q_C > K_C$; $N_2(g)$ and $H_2(g)$ react to form $NH_3(g)$ and the system reaches equilibrium.

34. Which of the following statement/s regarding the reaction between compound P and HCl to form an alkyl halide is/are correct?

- (a) The major product is 2-chloro-2-methylbutane.
- (b) A secondary carbocation is formed as an intermediate in this reaction.
- (c) In one of the steps of the reaction, the HCl bond is cleaved to give a chlorine radical (Cl*).
- (d) In one of the steps of the reaction, a nucleophile reacts with a carbocation.
- 35. A binary liquid mixture prepared by mixing two liquids in a closed evacuated container at a given temperature shows a negative deviation from Roult's Law. Which of the following statement/s is/are correct for this system?
 - (a) Total vapour pressure of the mixture is less than the expected total vapour pressure should it behave as an ideal mixture.
 - (b) Heat is released when the mixture is formed.
 - (c) Number of molecules in the vapour phase of the mixture is greater than the expected number of molecules should it behave as an ideal mixture.
 - (d) Heat is absorbed when the mixture is formed.
- 36. Which of the following statement/s is/are correct with regard to CFC, HCFC and HFC?
 - (a) Both classes of compounds CFC and HCFC have the ability to produce chlorine free radicals in the upper atmosphere (stratosphere).
 - (b) Both classes of compounds HFC and HCFC have the ability to produce chlorine free radicals in the upper atmosphere (stratosphere).
 - (c) All three classes of compounds CFC, HCFC and HFC are strong greenhouse gases.
 - (d) All three classes of compounds CFC, HCFC and HFC contribute significantly to ozone layer depletion.
- 37. Which of the following statement/s is/are correct with regard to halogens, noble gases and their compounds?
 - (a) Hypochlorous ion disproportionates rapidly in acidic solutions.
 - (b) Xe forms a series of compounds with F₂ gas, among which XeF₄ has a square planar geometry.
 - (c) Among the hydrogen halides, HF has the highest bond dissociation energy per mole.
 - (d) Boiling points of halogens increase down the group as a result of increasing strength of London forces.
- 38. Which of the following statement/s is/are correct regarding the Daniell cell when it operates at room temperature? $(E_{cell}^{\circ} = +1.10 \text{ V})$
 - (a) Net electron flow occurs from Zn to Cu.
 - (b) The equilibrium $Zn^{2+}(aq) + 2e \rightleftharpoons Zn(s)$ shifts to the right.
 - (c) A liquid-junction potential is created due to the presence of a salt-bridge.
 - (d) The equilibrium $Cu^{2+}(aq) + 2e \rightleftharpoons Cu(s)$ shifts to the right.
- 39. Which of the following statement/s is/are correct for ideal gases and real gases at constant temperature?
 - (a) At very high pressures, the volume of a real gas is higher than that of an ideal gas.
 - (b) At high pressures, real gases tend to behave as ideal gases.
 - (c) At very high pressures, the volume of a real gas is lower than that of an ideal gas.
 - (d) At low pressures, real gases tend to behave as ideal gases.
- 40. Which of the following statement/s is/are correct regarding some industrial processes?
 - (a) The first two steps involved in the manufacture of Na₂CO₃ by Solvay Process are endothermic.
 - (b) The presence of Mg²⁺, Ca²⁺ and SO₄²⁻ ions in brine, hinders the production of NaOH using the membrane cell method.
 - (c) The first step involved in the manufacture of nitric acid by Ostwald method is the oxidation of NH₃ gas using O₂ in air in the presence of a catalyst to give NO₂ gas.
 - (d) High temperature and low pressure conditions are employed in the manufacture of NH₃ gas using Haber-Bosh process.

• In question Nos. 41 to 50, two statements are given in respect of each question. From the Table given below, select the response, out of the responses (1), (2), (3), (4) and (5), that best fits the two statements and mark appropriately on your answer sheet.

Response	First Statement	Second Statement
(1)	True	True, and correctly explains the first statement
(2)	True	True, but does not explain the first statement correctly
(3)	True	False
(4)	False	True
(5)	False	False

\ \[First Statement	Second statement
41.	Among the oxides of Cr and Mn, CrO and MnO are acidic, while CrO ₃ and Mn ₂ O ₇ are basic.	The acidic/basic nature of the oxides of Cr and Mn is dependant on the oxidation number of the metal.
	mixing a weak acid HA(aq) with its sodium salt NaA(aq).	When $OH^-(aq)$ or $H^+(aq)$ ions are added to a buffer solution, the added amounts of $OH^-(aq)$ or $H^+(aq)$ ions are removed through the reactions; $OH^-(aq) + HA(aq) \rightarrow A^-(aq) + H_2O(l)$ and $H^+(aq) + A^-(aq) \rightarrow HA(aq)$ respectively.
43.	steam distillation at a temperature below 100 °C.	At the temperature at which a mixture of essential oil and water boils, the total vapour pressure of the system is less than the atmospheric pressure.
44 .	volumes of two different ideal gases are different from each other.	QX
	diastereoisomerism.	Any two isomers which are not mirror images of each other are diastereoisomers.
	Hydrogenation of benzene is more difficult than hydrogenation of alkenes.	the loss of aromatic stabilization.
47.	and water in the production of sulphuric acid is endothermic.	
48.	gives a mixture of primary, secondary and tertiary amines and a quaternary ammonium salt.	\dot \dot \dot \dot \dot \dot \dot \dot
49.	respect to the reactant P, the graph of rate against concentration of P gives a straight line passing through the origin.	
50	On a sunny day, strong photochemical smog car be seen in a city with heavy traffic congestion	Photochemical smog is caused entirely by scattering of solar radiation by small particles and water droplets that are emitted by vehicle exhaust systems.
	*:	* *

The Periodic Table

	1	7																
																		2
1	H		,										**					He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	'	1	1	1
	11	12	1											C	N	0	F	Ne
			i										13	14	15	16	17	18
3	Na	Mg	ļ	,									Al	Si	P	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4.	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	1		l	I		ĺ	_	
	55	_	_				 		KII	ru	Ag	Cd	In	Sn	Sb	Te_	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr			Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	1	i	1
Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr		1	91	92	93	94	95	96	97	98	99	100			
dhi, i dh	Oth I other ways of the second	AND HAD AND AND AND AND AND AND AND AND AND A	Oth Sty.	Admithal Hions	Oth Sty.	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md		
C. L. O. L. C. L.												\ \ \		X						
<i>O</i> ,														7) ())				
																<i>Q</i> ,	\			

Department of RAdminations Sty Lanka

മ്മര്യ ම තිම්කම් ඇවිරිණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabu

තර්තමේත්තුව ලී ලංකා විභාග දෙපාර්ත**ි අල්ද කිරීම පිරිදිවා උපපාර්තමේන්තුව**තාහ දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව නිශාක්ෂියන්ව இலங்கைப் புදිගත්ති නිශාක්ෂියන්ව இතුවින් ප්රධාන දෙපාර්තමේන්තුවකට ඉදින්න දෙපාර්තමේන්තුව ations, Sri Lanka Department of **ඔබාගියෙන්, Sri Lanka** මේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව අතු නිශාක්ෂියන්ව இலங்கைப் පිරිදික්ෂය සිදුරු කිරීමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව මෙන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination. 2020

රසායන විදාහව Ħ இரசாயனவியல் II Chemistry H

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

අමතර කියවීම් කාලය මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

Index No. :

Use additional reading time to go through the question paper, select the questions and decide on the questions that you give priority in answering.

- A Periodic Table is provided on page 15.
- Use of calculators is not allowed.
- Universal gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$
- Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ In answering this paper, you may represent alkyl groups in a condensed manner.

 $-\stackrel{1}{\text{C}}$ group may be shown as CH_3CH_2

□ PART A — Structured Essay (pages 02 - 08)

- Answer all the questions on the question paper itself.
- Write your answer in the space provided for each question. Please note that the space provided is sufficient for the answer and that extensive answers are not expected.
 - □ PART B and PART C Essay (pages 09 14)
- Answer four questions selecting two questions from each part. Use the papers supplied for this purpose.
- At the end of the time allotted for this paper, tie the answers to the three Parts A, B and C together so that Part A is on top and hand them over to the Supervisor.
- You are permitted to remove only Parts B and C of the question paper from the Examination Hall.

For Examiner's Use Only

Part	Question No.	Marks
	1	
A	2	
	3	
	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
	Total	

_	_	
- 7	Γ_{\sim}	40

In Numbers	7 0,
In Letters	<u> </u>

Code Numbers

Marking Examiner 1	
Marking Examiner 2	
Checked by :	
Supervised by:	

PART A - STRUCTURED ESSAY

Answer all four questions on this paper itself. (Each question carries 100 marks.)

Do not write in this column.

- 1. (a) Write the answers to the questions given below on the dotted lines.
 - (i) Of the three ions Na⁺, Mg²⁺ and F⁻, which one has the smallest ionic radius?
 - (ii) Of the three elements C, N and O, which one has the highest second ionization energy?
 - (iii) Of the three compounds H₂O, HOCl and OF₂, which one has the most electronegative oxygen atom?
 - (iv) Of the three elements Be, C and N, which one will liberate energy when an electron is added to its atom $[Y(g) + e \rightarrow Y(g); Y = Be, C, N]$ in the gaseous state?

- (v) Of the three ionic compounds NaF, KF and KBr, which one has the highest solubility in water?
- (vi) Of the three compounds HCHO, CH₃F and H₂O₂, which one has the strongest intermolecular forces?
- (i) Draw the most acceptable Lewis dot-dash structure for the ion, N₂O₃²⁻. Its skeleton is **(b)** given below.

(ii) Draw three more Lewis dot-dash structures (resonance structures) for this ion. Indicate the relative stabilities of the structures drawn by you, when compared with the most acceptable structure drawn in (i) above, by writing 'less stable' or 'unstable' under these structures.

(iii) Complete the given table based on the Lewis dot-dash structure and its labelled skeleton given below.

$$: \ddot{O}: \\ : \ddot{C}l - \overset{\bullet}{N} = \ddot{N} - \ddot{O} - C \equiv N:$$

$$Cl - N^{1} - N^{2} - O^{3} - C \equiv N$$

$$N^{1} - N^{2} - O^{3} - C \equiv N$$

U			
CI—N¹—N	r2 \rightarrow 3	C4	NI
~!~ M—!~	1 — O -	— C —	_1 <i>A</i>

	N'	N ²	O	C.
VSEPR pairs around the atom				
electron pair geometry around the atom				
shape around the atom				
hybridization of the atom				

(iv) Ident	as in part (in the interior in	sed on the Lewis dot-dash s (iii). nic/hybrid orbitals involved i	n the formation of		in th
atoms	s given belov	W.			
I. C	Cl—N¹	Cl			
II. N	η <u></u> Ο	N^1	Ο		
III. N	$N^{1}-N^{2}$	N ¹	N ²		
IV. N	$V^2 - O^3$	N ²	O ³	•••••	
v . c		O ³			
		C ⁴			
(v) Identi		c orbitals involved in the form			
below				i	
I. N	$[^1-N^2]$	N^1	N ²	•••••	
II. C	⁴ —N	N ¹	N		
		C ⁴			
(vi) State	the approxi	imate bond angles around N	N^{1} , N^{2} , O^{3} and C^{4} a	itoms.	
		, N ² ,			
(vii) Arran		ns N^1 , N^2 , O^3 and C^4 in th			
(vii) Tilluli				of electronegativity.	
		<	<	(56 marks)	
		g information.			
I. T	The atoms σ bond. T	$\bf A$ and $\bf B$ combine to formula $\bf B$ is represented as $\bf A-\bf B$	n a heterodiatomic	molecule AB that has	
II. 7	The electron	negativity of A is less than	that of \mathbf{B} ($X_{\mathbf{A}} < X$	(\mathbf{p}) .	
Y	< = electron	negativity of the atom			
III. 7 i:	The inter-nu s given by	clear distance between A a the following equation.	and B atoms (d _{A-F}) of the AB molecule	
		$+ r_{\mathbf{B}} - c(X_{\mathbf{B}} - X_{\mathbf{A}})$		10	
	AB ^A	– <i>D</i> A		\(\sum_{\text{\chi}}\)	
d		radius, $c = 9 pm$		X ,	
d r	= atomic	-	etres (pm). (1 pm =	10 ⁻¹² m)	
d r N	= atomic	d r are measured in picome		10 ⁻¹² m)	
r Based on t	= atomic Note: d and the above in	d r are measured in picome	wing questions.		
r Based on t	= atomic Note: d and the above in	d r are measured in picome	wing questions.		<u> </u>
Based on t (i) What	= atomic Note: d and the above in is the name	d r are measured in picome	owing questions. of σ bond between	A and B?	Q)

the state of the s			
20/02-E-II(A)(NEW)	- 4 -		
		the H-F bond in the HF molecule using Electronegativity of F = 4.0 Dipole moment of HF = 6.0×10^{-30} C m Charge of an electron = 1.6×10^{-19} C	Do not write in this column.
PORTX OF A			

(20 marks)

100

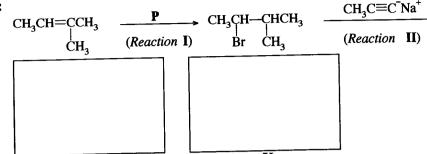
2. (a) A, B, C and D are chlorides of p-block elements. These elements have atomic numbers less than 20. A description of the products (P₁-P₉) formed when A is reacted with a limited amount of water and B, C and D are reacted with excess water are given below.

		-
	d Description of products	Compound
	P ₁ a compound with a covalent network structure	
	P ₂ a strong monobasic acid	A
	P ₃ a gas that turns red litmus blue	
	P ₄ a compound with bleaching properties	В
٠.	P ₅ a tribasic acid	
<u>```</u>	P ₆ a strong monobasic acid	C
	P ₇ a gas that turns acidic KMnO ₄ solution colourless	
	P ₈ a colloidal solid	D
	P ₉ a strong monobasic acid	į
	P ₈ a colloidal solid	D

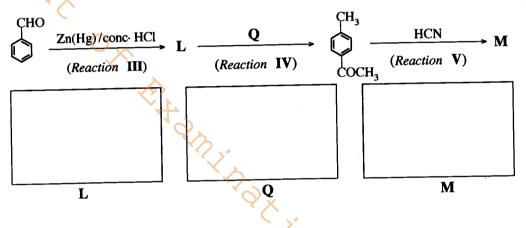
	D	P ₈ P ₉	a colloidal solid a strong monobasic acid
(i) Identify A,	В,	C and D (give the chemical formulae).
i	A:i) Give balance give produc	ed	chemical equations for the reactions of A, B, C and D with water to
		• • • • •	

II. P ₃ with Mg III. P ₃ with Mg III. P ₃ with Mg III. P ₇ with acidic K ₂ Cr ₂ O ₇ (89 marks) (89 marks) (80 marks) (91 marks) (92 marks) (93 marks) (10 marks) (11 marks) (12 marks) (13 marks) (14 marks) (15 marks) (16 marks) (17 marks) (18 marks) (19 marks) (10 marks) (10 marks) (10 marks) (10 marks) (11 marks) (12 marks) (12 marks) (13 marks) (14 marks) (15 marks) (16 marks) (17 marks) (18 marks) (18 marks) (19 marks) (10 marks) (11 marks) (12 marks) (13 marks) (14 marks) (15 marks) (16 marks	I. P ₁ with NaOH(aq)	
III. P ₃ with Mg III. P ₇ with acidic K ₂ Cr ₂ O ₇ (50 mark) (b) A student is provided with bottles labelled P, Q, R, S, T and U containing aqueous solutions of Al ₂ (SO ₄) ₃ , H ₂ SO ₄ , Na ₂ S ₂ O ₃ , BaCl ₂ , Pb(Ac) ₂ and KOH (not in order). Some useful observations for their identification on mixing two solutions at a time are given below. (Ac - Acetate ion) Solutions mixed		in
(b) A student is provided with bottles labelled P, Q, R, S, T and U containing aqueous solutions of Al ₂ (SO ₄) ₂ , H ₂ SO ₄ , Na ₂ S ₂ O ₃ , BaCl ₂ , Pb(Ac) ₂ and KOH (not in order). Some useful observations for their identification on mixing two solutions at a time are given below. (Ac - Acetate ion) Solutions mixed		
(b) A student is provided with bottles labelled P, Q, R, S, T and U containing aqueous solutions of Al ₂ (SO ₄) ₃ , H ₂ SO ₄ , Na ₂ S ₂ O ₃ , BaCl ₂ , Pb(Acl ₂ and KOH (not in order). Some useful observations for their identification on mixing two solutions at a time are given below. (Ac - Acetate ion) Solutions mixed		
(b) A student is provided with bottles labelled P, Q, R, S, T and U containing aqueous solutions of Al ₂ (SO ₄) ₃ , H ₂ SO ₄ , Na ₂ S ₂ O ₃ , BaCl ₂ , Pb(Ac) ₂ and KOH (not in order). Some useful observations for their identification on mixing two solutions at a time are given below. (Ac - Acetate ion) Solutions mixed		(50 marks)
of Al ₂ (SO ₄) ₃ , H ₂ SO ₄ , Na ₂ S ₂ O ₃ , BaCl ₂ , Pb(Ac) ₂ and KOH (not in order). Some useful observations for their identification on mixing two solutions at a time are given below. (Ac - Acetate ion) Solutions mixed Observations I	CA CONTRACTOR OF THE CONTRACTO	
observations for their identification on mixing two solutions at a time are given below. (Ac - Acetate ion) Solutions mixed	of $Al_2(SO_4)_3$, H_2SO_4 , $Na_2S_2O_3$, $BaCl_2$, $Pb(Ac)_2$ and KOH (not in order). Some	me useful
Solutions mixed Observations	observations for their identification on mixing two solutions at a time are given l	below.
I T+R a clear colourless solution II P+R a white precipitate III T+S a gelatinous white precipitate IV U+R a white precipitate V P+Q a white precipitate, turns black on heating VI P+U a white precipitate, dissolves on heating (i) Identify P to U. P: Q: R: S: T: U: (ii) Give balanced chemical equations for each of the reactions I to VI. I: II: III: IV: V: formation of white precipitate: turning black on heating: VI: (Note: indicate precipitates as ↓) (50 marks) (a) A saturated aqueous solution of a sparingly soluble salt AB₂(s) was prepared by stirring an excess amount of AB₂(s) in 1.0 dm³ of distilled water at 25 °C. The amount of A²+(aq) ions present in this saturated aqueous solution was found to be 2.0 × 10⁻³ mol. (i) Write the equilibrium related to the dissolution of AB₂(s) in the above system at 25 °C.	(Ac - Acetate ion)	
II P+R a white precipitate III T+S a gelatinous white precipitate IV U+R a white precipitate V P+Q a white precipitate, turns black on heating VI P+U a white precipitate, dissolves on heating (i) Identify P to U. P: Q: R: S: T: U: (ii) Give balanced chemical equations for each of the reactions I to VI. I: II: III: IV: V: formation of white precipitate: turning black on heating: VI: (Note: indicate precipitates as \$\dagger\$) (Note: indicate pr	Solutions mixed Observations	
III	I T + R a clear colourless solution	
IV	the water precipitate	
V P+Q a white precipitate, turns black on heating VI P+U a white precipitate, dissolves on heating	7	
(i) Identify P to U. P: Q: R: S: T: U: (ii) Give balanced chemical equations for each of the reactions I to VI. I: II: IV: V: formation of white precipitate: turning black on heating: VI: (Note: indicate precipitates as ↓) (So marks) (i) Mrite the equilibrium related to the dissolution of AB₂(s) in the above system at 25 °C.	The proofficial of the prooffici	
(i) Identify P to U. P:	white proofpitate, turns often on heating	
P:	VI P+U a white precipitate, dissolves on heating	
S:	(i) Identify P to U.	
S:	P: Q: R:	
(ii) Give balanced chemical equations for each of the reactions I to VI. I: II: III: IV: V: formation of white precipitate: turning black on heating: VI: (Note: indicate precipitates as ↓) (50 marks) A saturated aqueous solution of a sparingly soluble salt AB₂(s) was prepared by stirring an excess amount of AB₂(s) in 1.0 dm³ of distilled water at 25 °C. The amount of A²+(aq) ions present in this saturated aqueous solution was found to be 2.0 × 10⁻³ mol. (i) Write the equilibrium related to the dissolution of AB₂(s) in the above system at 25 °C.		
I: II: IV: V: formation of white precipitate: turning black on heating: VI: (Note: indicate precipitates as ↓) (So marks) a) A saturated aqueous solution of a sparingly soluble salt AB ₂ (s) was prepared by stirring an excess amount of AB ₂ (s) in 1.0 dm³ of distilled water at 25 °C. The amount of A²+(aq) ions present in this saturated aqueous solution was found to be 2.0 × 10 ⁻³ mol. (i) Write the equilibrium related to the dissolution of AB ₂ (s) in the above system at 25 °C.		
II: III: IV: V: formation of white precipitate: turning black on heating: VI: (Note: indicate precipitates as \$\frac{1}{2}\$) (Note: indicate precipitates as \$\frac{1}{2}\$) (Note: indicate precipitates as \$\frac{1}{2}\$) (So marks) a) A saturated aqueous solution of a sparingly soluble salt AB ₂ (s) was prepared by stirring an excess amount of AB ₂ (s) in 1.0 dm³ of distilled water at 25 °C. The amount of A ²⁺ (aq) ions present in this saturated aqueous solution was found to be 2.0 × 10 ⁻³ mol. (i) Write the equilibrium related to the dissolution of AB ₂ (s) in the above system at 25 °C.	``	
III: IV: V: formation of white precipitate: turning black on heating: VI: (Note: indicate precipitates as \$\bigsep\$) (So marks) a) A saturated aqueous solution of a sparingly soluble salt AB ₂ (s) was prepared by stirring an excess amount of AB ₂ (s) in 1.0 dm³ of distilled water at 25 °C. The amount of A ²⁺ (aq) ions present in this saturated aqueous solution was found to be 2.0 × 10 ⁻³ mol. (i) Write the equilibrium related to the dissolution of AB ₂ (s) in the above system at 25 °C.	П	
V: formation of white precipitate: turning black on heating: VI: (Note: indicate precipitates as ↓) (So marks) a) A saturated aqueous solution of a sparingly soluble salt AB ₂ (s) was prepared by stirring an excess amount of AB ₂ (s) in 1.0 dm³ of distilled water at 25 °C. The amount of A ²⁺ (aq) ions present in this saturated aqueous solution was found to be 2.0 × 10 ⁻³ mol. (i) Write the equilibrium related to the dissolution of AB ₂ (s) in the above system at 25 °C.	***	
V: formation of white precipitate: turning black on heating: VI: (Note: indicate precipitates as \$\bigsep\$) (So marks) a) A saturated aqueous solution of a sparingly soluble salt AB ₂ (s) was prepared by stirring an excess amount of AB ₂ (s) in 1.0 dm ³ of distilled water at 25 °C. The amount of A ²⁺ (aq) ions present in this saturated aqueous solution was found to be 2.0 × 10 ⁻³ mol. (i) Write the equilibrium related to the dissolution of AB ₂ (s) in the above system at 25 °C.		
V: formation of white precipitate: turning black on heating: VI: (Note: indicate precipitates as \$\bigsep\$) (So marks) a) A saturated aqueous solution of a sparingly soluble salt AB ₂ (s) was prepared by stirring an excess amount of AB ₂ (s) in 1.0 dm ³ of distilled water at 25 °C. The amount of A ²⁺ (aq) ions present in this saturated aqueous solution was found to be 2.0 × 10 ⁻³ mol. (i) Write the equilibrium related to the dissolution of AB ₂ (s) in the above system at 25 °C.		
(Note: indicate precipitates as \downarrow) (So marks) a) A saturated aqueous solution of a sparingly soluble salt $AB_2(s)$ was prepared by stirring an excess amount of $AB_2(s)$ in 1.0 dm³ of distilled water at 25 °C. The amount of $A^{2+}(aq)$ ions present in this saturated aqueous solution was found to be 2.0×10^{-3} mol. (i) Write the equilibrium related to the dissolution of $AB_2(s)$ in the above system at 25 °C.		
(Note: indicate precipitates as 1) (So marks) (a) A saturated aqueous solution of a sparingly soluble salt AB ₂ (s) was prepared by stirring an excess amount of AB ₂ (s) in 1.0 dm ³ of distilled water at 25 °C. The amount of A ²⁺ (aq) ions present in this saturated aqueous solution was found to be 2.0 × 10 ⁻³ mol. (i) Write the equilibrium related to the dissolution of AB ₂ (s) in the above system at 25 °C.		
 (Note: indicate precipitates as ↓) (50 marks) (a) A saturated aqueous solution of a sparingly soluble salt AB₂(s) was prepared by stirring an excess amount of AB₂(s) in 1.0 dm³ of distilled water at 25 °C. The amount of A²+(aq) ions present in this saturated aqueous solution was found to be 2.0 × 10⁻³ mol. (i) Write the equilibrium related to the dissolution of AB₂(s) in the above system at 25 °C. 		\\ \[\ \ \ \ \ \ \ \ \ \ \ \ \
 a) A saturated aqueous solution of a sparingly soluble salt AB₂(s) was prepared by stirring an excess amount of AB₂(s) in 1.0 dm³ of distilled water at 25 °C. The amount of A²⁺(aq) ions present in this saturated aqueous solution was found to be 2.0 × 10⁻³ mol. (i) Write the equilibrium related to the dissolution of AB₂(s) in the above system at 25 °C. 	/NT=4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4 - 19 4	V 11
(i) Write the equilibrium related to the dissolution of AB ₂ (s) in the above system at 25 °C.	a) A saturated aqueous solution of a sparingly soluble salt AB ₂ (s) was prepared by an excess amount of AB ₂ (s) in 1.0 dm ³ of distilled water at 25 °C. The amount of	v stirring
		at 25 °C.
(ii) Write the expression for the equilibrium constant for the equilibrium written in (i) above at 25 °C.		
1	(ii) Write the expression for the equilibrium constant for the equilibrium written in (i) above	e at 25 °C.

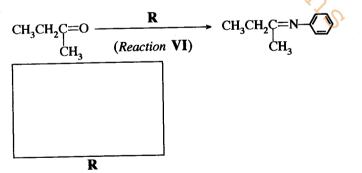
(iii)	Calculate the value of the equilibrium constant stated in (ii) above at 25 °C.	Do not write in this
` '		column.
		!
•		
	••••••	
0.	the stiming on every amount	
(iv)	Another saturated aqueous solution of AB ₂ was prepared by stirring an excess amount of AB ₂ (s) in 2.0 dm ³ of distilled water at 25 °C. Giving reasons, predict the value of	
	the equilibrium constant for this system.	
	A small amount of the strong electrolyte NaB(s) is added to a saturated aqueous solution	•
(v)	of AB ₂ at 25 °C. Giving reasons, predict whether the concentration of A ² (aq) is increased	
	or decreased.	
	(60 marks)	,
(b) In a	an aqueous solution, propanoic acid (C_2H_5COOH) ionizes as given below. $C_2H_5COOH(aq) + H_2O(l) \rightleftharpoons C_2H_5COO^{-}(aq) + H_3O^{+}(aq)$	
<i>(</i> :	At 25 °C, K_a (propanoic acid) = 1.0 × 10 ⁻⁵) Write the expression for the equilibrium constant for the above reaction at 25 °C.	
(1) Write the expression for the equinorium constant	
	c C I COOL(so was prepared by dissolving	,
(ii	i) 100.0 cm ³ of an aqueous solution of C ₂ H ₅ COOH(aq) was prepared by dissolving 0.74 cm ³ of C ₂ H ₅ COOH in distilled water at 25 °C. Calculate the pH of the solution at 25 °C.	
	$(C = 12; O = 16; H = 1; consider the density of C_2H_5COOH as 1.0 g cm-3)$	-
	\prec	
		, Ø
		1/
		- V


(40 marks)

TIESTON DE LA TRANSPORTE	•		
4. (a) A, B, C and D are structural ison optical isomerism. All four ison products which react with 2,4-c	ners, A, B, C and D when treate	ed with HgSO ₄ /dil. H ₂ SO ₄ give	Do not write in this column.
Only A gives a precipitate with	ammonical AgNO ₂ . A has only o	one position isomer, which is B .	
B is a chain isomer of C. C r	eacts with HgSO ₄ /dil. H ₂ SO ₄ to	o give two products E and F.	
D reacts with HgSO ₄ /dil. H ₂ So	O_4 to give only one product, v	which is E .	
	B, C, D, E and F in the box	1	
	, , , ,	g. von	
A	В	C	
, O			
D			
	E B, C and D gives a product that do	F	
when reacted separately with	II /Dd Dago /i - 1' - 0	as not show diastereoisomerism	
The state of the s	Th ₂ /Pd-BasO ₄ /quinoline?		
	`\?\.		
	X		
	, ,		
	*X.,	İ	
(iii) Draw, in the box given b	elow the structure of the pro-	educt C obtained when A is	
reacted with excess HBr.	oron, the structure of the pro-	State of obtained when A is	
		S.	
(1) 5	G	` >	
(iv) Draw the structures of production appropriate boxes.	ucts X and Y obtained in the fo	ollowing reactions of E, in the	
			4
	NaBH ₄ 1. C ₂ H ₅ MgBr		Ø
	$\frac{\text{NaBH}_4}{\text{Methanol}} \mathbf{E} \frac{1. \text{ C}_2\text{H}_5\text{MgBr}}{2. \text{ H}^+/\text{H}_2\text{O}}$		·
	2		ļ
X			
		Y	
Name a test to distinguish	between X and Y.		
	•••••		
		(60 marks)	


(i) Complete the following three reaction sequences by drawing structures of compounds **(b)** K, L and M and giving the reagents/catalysts P, Q and R in the boxes given below.

Do not in this column.


Sequence 1:

Sequence 2:

Sequence 3:

(30 marks)

(ii) Selecting from the reactions I - VI, give one (01) example for each of the following types of reactions.

Nucleophilic addition

(10 *marks*) Nucleophilic substitution

100

മ്മൂള ම හිමිකම් ඇව්රිණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved

(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus

இது நடித்த நிலைக்களம் இலங்கைப் பிட்சிசத் திலைக்களம் இலங்கைப் பிட்சைத் திலைக்களம் (இலங்கைப் பிட்சைத் திலைக்களம் இலங்கைப் பிட்சைத் திலைக்களம் இலங்கைப் பிட்சைத் திலைக்களம் இலங்கைப் பிட்சைத் திலைக்களம் இலங்கைப் பிட்கிசத் திலைக்களம் இலங்கைப் பிட்சைத் திலைக்களம்

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

රසායන විදාහව II இரசாயனவியல் II **Chemistry** II

- * Universal gas constant $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$
- * Avogadro constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

PART B — ESSAY

Answer two questions only. (Each question carries 150 marks.)

5. (a) A compound XY₂Z₂(g) undergoes dissociation when heated to temperatures above 300 K as given below.

$$XY_2Z_2(g) \rightleftharpoons XY_2(g) + Z_2(g)$$

A sample of 7.5 g of $XY_2Z_2(g)$ was placed in an evacuated 1.00 dm³ rigid-closed container and the temperature was raised to 480 K.

Molar mass of $XY_2Z_2(g)$ is 150 g mol^{-1} . Use the approximate value of 4000 J mol^{-1} for RT at 480 K. Assume ideal gas behaviour for all gases.

- (i) Calculate the number of moles of $XY_2Z_2(g)$ in the container before dissociation.
- (ii) When the above system reaches equilibrium at 480 K, the total number of moles in the container was found to be 7.5×10^{-2} mol. Calculate the number of moles of $XY_2Z_2(g)$, $XY_2(g)$ and $Z_2(g)$ in the equilibrium mixture at 480 K.
- (iii) Calculate the equilibrium constant K_c for the above reaction at 480 K.
- (iv) Calculate K_p for the equilibrium at 480 K.

(75 marks)

- (b) For the reaction $XY_2Z_2(g) \rightarrow XY_2(g) + Z_2(g)$ described in (a), Gibbs free energies (G) at 480 K for $XY_2Z_2(g)$, $XY_2(g)$ and $Z_2(g)$ are -60 kJ mol⁻¹, -76 kJ mol⁻¹ and -30 kJ mol⁻¹, respectively.
 - (i) Calculate ΔG (in kJ mol⁻¹) for the reaction at 480 K.
 - (ii) The magnitude of ΔS of the above reaction is 150 J K⁻¹ mol⁻¹ at 480 K. Calculate ΔH for the reaction at 480 K by using the appropriate sign (- or +) of ΔS .
 - (iii) By using the sign (-or +) of ΔH obtained in (ii), explain whether this reaction is exothermic or endothermic.
 - (iv) Deduce the enthalpy difference for the formation of $XY_2Z_2(g)$ from $XY_2(g)$ and $Z_2(g)$ at 480 K.
 - (v) If the bond enthalpy of the X-Z bond in $XY_2Z_2(g)$ is +250 kJ mol⁻¹, calculate the bond enthalpy of the Z-Z bond.

(Assume that $XY_2Z_2(g)$ has the structure Z = X - Z)

(vi) If liquid XY_2Z_2 is used instead of gaseous XY_2Z_2 , giving reasons, explain whether the value of ΔH obtained for the reaction $XY_2Z_2(l) \rightarrow XY_2(g) + Z_2(g)$ is equal to, or higher or lower than ΔH obtained in (ii). (75 marks)

6. (a) Consider the reaction given below occurring in a closed container at a given temperature T.

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

- (i) Write **three** expressions for the rate of reaction relevant to each of the compounds appearing in the reaction.
- (ii) This reaction was carried out at temperature T with an initial concentration of $0.10 \,\mathrm{mol}\,\mathrm{dm}^{-3}$ of $N_2O_5(g)$. It was found that 40% of the initial amount was decomposed after a period of 400 s.
 - I. Calculate the average rate of decomposition of N₂O₅(g) in this time interval.
 - II. Calculate average rates of formation of $NO_2(g)$ and $O_2(g)$.
- (iii) In another experiment, initial rates were measured for this reaction at 300 K and the results are given below.

[N ₂ O ₅ (g)] / mol dm ⁻³	0.01	0.02	0.03
Initial rate / mol dm ⁻³ s ⁻¹	6.930×10^{-5}	1.386×10^{-4}	2.079×10^{-4}

Derive the rate law for the reaction at 300 K.

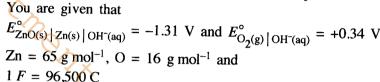
- (iv) Another experiment was carried out at 300 K with an initial concentration of 0.64 mol dm⁻³ of $N_2O_5(g)$. It was found that the concentration of $N_2O_5(g)$ which remained after a period of 500 s was 2.0×10^{-2} mol dm⁻³.
 - I. Calculate the half-life $(t_{1/2})$ of the reaction at 300 K.
 - II. Calculate the rate constant of the reaction at 300 K.
 - (v) This reaction proceeds through a mechanism involving the following elementary steps.

Show that the above mechanism is consistent with the rate law of the reaction. (80 marks)

- (b) An ideal binary-liquid mixture was prepared by mixing two liquids of **A** and **B** in a closed evacuated container at temperature T. After establishing the equilibrium at temperature T, partial pressures of **A** and **B** in the vapour phase are $P_{\mathbf{A}}$ and $P_{\mathbf{B}}$, respectively. At temperature T, the saturated vapour pressures of **A** and **B** are $P_{\mathbf{A}}^{\circ}$ and $P_{\mathbf{B}}^{\circ}$, respectively. Mole fractions of **A** and **B** in solution are $X_{\mathbf{A}}$ and $X_{\mathbf{B}}$, respectively.
 - (i) Show that $P_A = P_A^{\circ} X_A$ (Consider that the rates of vaporization and condensation are equal at equilibrium.)
 - (ii) In the above system at 300 K, the total pressure was 5.0×10^4 Pa. The saturated vapour pressures of pure **A** and **B** at 300 K, are 7.0×10^4 Pa and 3.0×10^4 Pa, respectively.
 - I. Calculate the mole fraction of A in the liquid phase of the equilibrium mixture.
 - II. Calculate the vapour pressure of A in the equilibrium mixture.

(70 marks)

Electrolyte

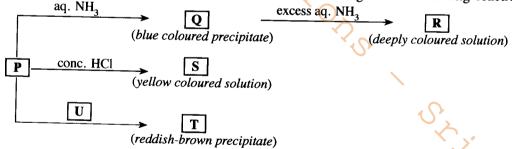

Anode

7. (a) (i) To compare the properties of Electrolytic and Galvanic cells, copy and complete the following table using the given terms.

Terms: anode, cathode, positive, negative, spontaneous, non-spontaneous.

		Electrolytic cell	Galvanic cell
Α.	Oxidation half-reaction takes place at		
	Reduction half-reaction takes place at		
	Sign of E_{cell}°		
D.	Electron flow	From to	From to
E.	Spontaneity of the cell reaction	1 10111	From to

(ii) An electrochemical cell was constructed at 300 K by using a Zn(s) anode, an aqueous alkaline electrolyte and a porous Pt cathode which facilitates the collection of oxygen O₂(g) from air as shown below. As the cell operates ZnO(s) is produced.


- II. Write the overall cell reaction.
- III. Calculate the cell potential E_{cell}° at 300 K.
- IV. State the direction of migration of OH⁻(aq) ions between the electrodes.
- V. When the cell operates for a period of 800 s at 300 K, 2 mol of $O_2(g)$ are consumed.
 - A. Calculate the number of moles of electrons passing through the cell.
 - B. Calculate the mass of ZnO(s) formed.
 - C. Calculate the current passing through the cell.

(75 marks)

Porous

Cathode

(b) A coloured complex ion \mathbf{P} is formed when the salt $\mathbf{M}(NO_3)_n$ is dissolved in distilled water. \mathbf{M} is a transition element belonging to the 3d block. \mathbf{P} undergoes the following reactions.

T and U are coordination compounds each containing four elements. P, R and S are complex ions.

- (i) Identify the metal M. Give the oxidation state of M in complex ion P.
- (ii) Give the value of n in $\mathbf{M}(NO_3)_n$.
- (iii) Write the complete electronic configuration of \mathbf{M} in complex ion \mathbf{P} .
- (iv) Write the chemical formulae of P, Q, R, S, T and U.
- (v) Give the IUPAC names of P, R, S, T and U.
- (vi) What is the colour of P?
- (vii) What would you expect to observe in I and II given below?
 - I. When H₂S gas is passed into an acidic solution containing **P** at room temperature
 - II. When the mixture obtained in I above is heated with dilute HNO₃ after the removal of dissolved H₂S
- (viii) Briefly describe a method with the aid of balanced chemical equations for determining the concentration of Mⁿ⁺ present in an aqueous solution, using the following chemicals.

 KI, Na₂S₂O₃ and starch.

PART C - ESSAY

Answer two questions only. (Each question carries 150 marks.)

8. (a) (i) Given below is a reaction scheme for the synthesis of compound G using CH₂CH₂CH₂OH as the only organic starting compound.

Complete the reaction scheme by drawing the structures of compounds A, B, C, D, E and F and writing the appropriate reagents for steps 1-7, selected only from those given in the list.

$$CH_{3}CH_{2}CH_{2}OH \xrightarrow{Step 1} A \xrightarrow{Step 2} B \xrightarrow{Step 3} C$$

$$Step 4$$

$$D$$

$$C$$

$$Step 5 \xrightarrow{Step 5} CH_{3}CH_{2}CH_{-}CH_{-}CH_{3} \xrightarrow{Step 6} F \xrightarrow{Step 7} CH_{3}CH_{2}CH_{-}CHCH_{3} \xrightarrow{CH_{3}} G$$

$$CH_{3}$$

$$CH_$$

(ii) Consider the following series of reactions.

Draw the structures of compounds G, H and K. Give the reagents X, Y and Z.

CHO
$$X \rightarrow G$$
 $Y \rightarrow COCl$ $Z \rightarrow H$ 1. LiAlH₄ 2. H⁺/H₂O $X \rightarrow K$

Note that **K** gives benzyl alcohol (when reacted with NaNO₂/ dil. HCl. (24 marks)

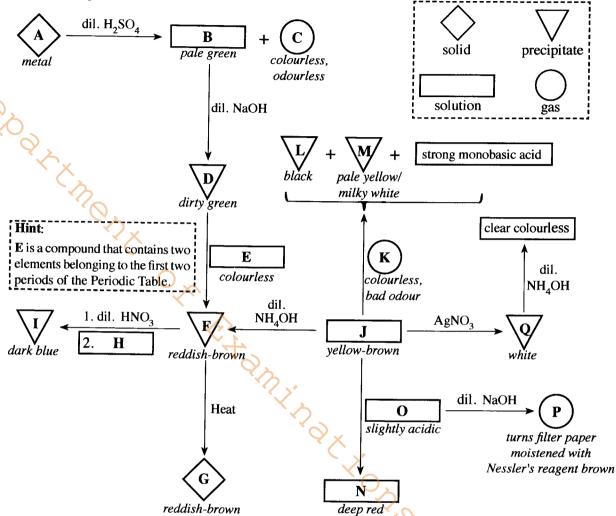
(b) (i) Show how the following conversion could be carried out in not more than three steps.

$$\bigcap^{\mathrm{NH}_2} \longrightarrow \bigcap^{\mathrm{Br}}_{\mathrm{Br}}$$

(20 marks)

(ii) Consider the following reaction.

$$\begin{array}{c} \text{CH}_3\text{CHCH}_2 \\ \\ \end{array}$$


Identify the chemical substances **P** and **Q** necessary to carry out this reaction. Write the mechanism of this reaction.

(20 marks)

- (c) (i) Explain why phenol is more reactive in electrophilic substitution reactions than benzene, by considering their resonance hybrids.
 - (ii) Illustrate the difference in reactivity between phenol and benzene as given in (i) above by means of a suitable reaction.
 - (iii) Draw the structure(s) of product(s) you described in the reaction in (ii) above.

(34 *marks*)

9. (a) (i) Write the chemical formulae of the substances A – Q given in the flow chart below. (Note: Chemical equations and reasons are not expected for the identification of substances A – Q.) The symbols given in the box (dash lines) are used to represent solids, precipitates, solutions and gases.

- (ii) Write the complete electronic configuration of A.
- (iii) State the function of E in the conversion of D to F. Give the relevant balanced chemical equations for the stated function. (75 marks)
- (b) The solid X contains only Cu₂S and CuS. The following procedure was used to determine the percentage of Cu₂S in X.

Procedure

A 1.00 g portion of solid **X** was treated with 100.00 cm³ of 0.16 mol dm⁻³ KMnO₄ in dilute H_2SO_4 medium. This reaction gave Mn²⁺, Cu^{2+} and SO_4^{2-} as products. Thereafter, the excess KMnO₄ in this solution was titrated with 0.15 mol dm⁻³ Fe²⁺ solution. The volume required for the titration was 35.00 cm³.

- (i) Write the balanced ionic equations for the reactions taking place in the above procedure.
- (ii) Based on the answers to (i) above, determine the molar ratio between,
 - I. Cu₂S and KMnO₄
 - II. CuS and KMnO₄
 - III. Fe²⁺ and KMnO₄
- (iii) Calculate the percentage by weight of Cu_2S in **X**. (Cu = 63.5, S = 32)

(75 *marks*)

- 10. (a) The following questions are based on the properties of titanium dioxide (TiO₂) and its manufacture carried out by the "Chloride Process".
 - (i) Name the raw materials used in this process.
 - (ii) Briefly describe the manufacturing process of TiO₂ giving balanced chemical equations where applicable.
 - (iii) State three properties of TiO2 and give one use each, relevant to each property.
 - (iv) If you were to consider establishing a TiO₂ manufacturing plant in Sri Lanka, state three requirements that need to be fulfilled.
 - (v) Does the manufacturing process described in (ii) above contribute to global warming?

 Justify your answer.

 (50 marks)
 - (b) Currently, global warming due to change in greenhouse effect is significantly greater than that before the industrial revolution.
 - (i) Explain briefly what is meant by greenhouse effect.
 - (ii) Identify the major environmental problem that occurs due to global warming.
 - (iii) State two main natural gases that contribute to global warming.
 - (iv) Explain briefly how microorganisms contribute to the release of the gases you stated in (iii).
 - (v) In addition to the gases you stated in (iii), name **two** classes of synthetic volatile compounds that directly contribute to the global warming, and selecting one compound from each class, draw their structures.
 - (vi) Select one class of compounds from the two classes you stated in (v) that contributes to the catalytic degradation of ozone in the upper atmosphere.
 - (vii) The slow down of industrial activities due to the Covid-19 pandemic temporarily eased the global environmental issues in many countries. Justify this statement by using two main global environmental issues you have learnt.

 (50 marks)
 - (c) The following questions are based on the polymers given below.

Polyvinyl chloride (PVC), Polyethylene (PE), Polystyrene (PS), Bakelite, Nylon 6.6, Polyethylene terephthalate (PET), Gutta percha

- (i) Draw the repeating units of four of the above polymers.
- (ii) Categorize each of the above seven (7) polymers as either,
 - I. natural or synthetic polymers.
 - II. addition or condensation polymers.
- (iii) Name the two monomers used in the formation of bakelite.
- (iv) Polymers can be grouped into two categories based on their thermal properties. State these two categories. Write to which of these categories PVC and bakelite belong.
- (v) Give one use each for three of the polymers given in the above list.

(50 marks)

The Periodic Table

		1																
	1																	2
1	H																	He
	3	4											5	6	7	8	9	10
2	Li	Be	·										В	$ \mathbf{c} $	N	o	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Ο,	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	_ Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	× 56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				Np	97	5 5*								
	-					\	9	X						
								7	, ().					
										\mathcal{O}				
												Ş	、	•

Department of PARMINANIAN ST. Lanks