

Department of Examinations - Sri Lanka

G.C.E. (A/L) Examination - 2021 (2022)

Marking Scheme

31 - Business Statistics

This has been prepared for the use of marking examiners. Changes would be made according to the views presented at the Chief/Assistant Examiners' meeting.

Amendments to be included.

G.C.E. (A/L) Examination - 2021 (2022)

Common Techniques of Marking Answer Scripts.

It is compulsory to adhere to the following standard method in marking answer scripts and entering marks into the mark sheets.

- 1. Use a red color ball point pen for marking. (Only Chief/Additional Chief Examiner may use a mauve color pen.)
- 2. Note down Examiner's Code Number and initials on the front page of each answer script.
- 3. Write off any numerals written wrong with a clear single line and authenticate the alterations with Examiner's initials.
- 4. Write down marks of each subsection in a \bigtriangleup and write the final marks of each question as a rational number in a \Box with the question number. Use the column assigned for Examiners to write down marks.

MCQ answer scripts: (Template)

- 1. Marking templets for G.C.E.(A/L) and GIT examination will be provided by the Department of Examinations itself. Marking examiners bear the responsibility of using correctly prepared and certified templates.
 - . Then, check the answer scripts carefully. If there are more than one or no answers Marked to a certain question write off the options with a line. Sometimes candidates may have erased an option marked previously and selected another option. In such occasions, if the erasure is not clear write off those options too.
- 3. Place the template on the answer script correctly. Mark the right answers with a ' $\sqrt{}$ ' and the wrong answers with a 'X' against the options column. Write down the number of correct answers inside the cage given under each column. Then, add those numbers and write the number of correct answers in the relevant cage.

Structured essay type and assay type answer scripts:

- 1. Cross off any pages left blank by candidates. Underline wrong or unsuitable answers. Show areas where marks can be offered with check marks.
- 2. Use the right margin of the overland paper to write down the marks.
- 3. Write down the marks given for each question against the question number in the relevant cage on the front page in two digits. Selection of questions should be in accordance with the instructions given in the question paper. Mark all answers and transfer the marks to the front page, and write off answers with lower marks if extra questions have been answered against instructions.
- 4. Add the total carefully and write in the relevant cage on the front page. Turn pages of answer script and add all the marks given for all answers again. Check whether that total tallies with the total marks written on the front page.

Preparation of Mark Sheets.

Except for the subjects with a single question paper, final marks of two papers will not be calculated within the evaluation board this time. Therefore, add separate mark sheets for each of the question paper. Write paper 01 marks in the paper 01 column of the mark sheet and write them in words too. Write paper II Marks in the paper II Column and wright the relevant details.

09 0 800	ி ආජීරිති (முழுப் பதிப்புரிமையுடையது/All Rights Reserved)	
දී ලංකා වන		to cravingBring
தலங்கைப் Department	பிட்சைத் திணைக்களம் இலங்கைப் படிக்கு திணைக்களம் இலங்கைப் பிடன்த் திணைக்களம் இலங்கைப் பிடன் திகைகளு குணைக்களம் இலங்கைப் பிடன்து திணைக்களம் இலங்கைப் பிடன்து திணைக்களம் இலங்கைப் பிடன் of Examinations, Sri Lanka Department of இலிங்கை, SHI யூரைதாதிணைக்களமி ல், Sri Lanka Department of Exam	சத் திணைக்களம் inations, Sri Lanka
දී ලංකා එහ මුබාඡානාසට	ல சோடுகள் பரிட்சைத் திணைக்களம் இலங்கைப் பற்றுகள்கள் காண்டுகள் பிருந்துகள் காண்டுகள்கள் காண்டு சோடுகள்களு இன்னை இன பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சை	லை occ) பெற்றல் a constance
	අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022)	p grand south
	கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021(2022)	
	General Certificate of Education (Adv. Level) Examination, 2021(2022)	
ຽງຊາຂອງ		
ഖഞ്ഞിദ	ບັບຫຼາຍຄາຍແຫຼງ I (31) FI ອາເລ ອະລິ	
Busin	ess Statistics I	த்தியாலம
_		
Instru	tions:	
* Ans	wer all questions.	
* Wri * Sta	e your Index Number in the space provided in the answer sheet.	
* Inc	ructions are given on the back of the answer sheet Follow those carefully	
* In	each of the questions 1 to 50, pick one of the alternatives from $(1)_{(2)}$ (3) (4)), (5) which
is c	orrect or most appropriate and mark your response on the answer sheet with	a cross (x)
on	the number of the correct option in accordance with the instructions given at	the back of
the	answer sheet.	-
-		
. Cons	der the following statements on ordinal scale measurement.	
	A - The order is meaningful but the difference is not meaningful.	
	B - The magnitude of the interval and the value zero are meaningful.	
	C - The value itself is not meaningful.	
The	rue statement/s from the above is/are,	
(1)	only A. (2) only A and B. (3) on	ly A and C.
(4)	only B and C. (5) all A, B and C.	
Whic	of the following statements is true?	
(1)	Response errors in a completed questionnaire are removed during the editing	stage.
(2)	The response rate in the interview method is less than the response rate	in the posta
	method.	1010 - FALLO - L ORDON
(3)	The way the questions are asked in a questionnaire sometimes affects the res	sponse.
(4)	Data classification affects the reliability of the data.	
(5)	Questions with choices are not included in the questionnaire.	
Whic	of the following statements is true?	
(1)	Class width is used to calculate the area of each rectangle of a histogram.	
(2)	Only the height of the columns should be considered when creating a multiple	e vertical ba
10	chart.	
(3)	The values of a relative frequency distribution are given in integers only.	
(4)	it is not always possible to construct a histogram for a frequency distribution	with unequa
(5)	Data represented by a percentage component bar chart can also be represent	ited by a niv
(J)	chart.	ned by a ple

L	/2021(2022)/	31/E-I				- 2 -				
	The marks is 10 and	obtain leaf ur	ed by 27 nit is 1)	studen	ts are give	n in the	follow	ing stem-and	d-leaf diagram.	(Stem unit
	3	2	3	4	- 5		8			
	4	1	3	4	4	5	6	7		
	5	0	2	3	4	5	7	8		
	6	2	3	4	. 5	6				
	7	4	5	5						
	8	6								
	What is th	i ne inter	quartile	range ()	(OR)?					
	(1) 15.5		(2)	16.0	(3)	20.0		(4) 32.0	(5) 54.0	.0.
	Consider t	he follo	owing sta	tements.						
	B - C - The true (1) only	and lo Raw d Relativ stateme A.	wer class lata canno /e frequer nt/s from	bounda of be ac ncy poly the abo	ries. curately re gon canno ove is/are (2)	etrieved ot be use only C	from a ed to o	frequency p btain exact	olygon. median of a da (3) only	ata set. A and B.
	(4) only	B and	l C.		(5)	all A, 1	B and	С.		
	Which of	the foll	owing sta	tements	is true?		X			
	 (2) The that (3) Whe left (4) The (5) If the the comparison of the theory 	total fro class bo en there side of t kurtosis e stands central t	equency lo oundary. is a position the freque s measure ard deviation endency.	ive skew ncy poly ments re ion of a	any upper mess in the gon. present the distribution	distribut asymme is large	ion, the try of a , then th	s indicated b re is a long ta distribution. ne sample me	y the percentage ail on the right s can is a reliable	e ogive with side than the estimator of
	Which of	the foll	owing sta	tements	is false?					
	 (1) The (2) The (3) The 	geomet kurtosi most sı	ric mean i s coefficie uitable dis	is approp nt is zero persion i	oriate when o for a norr neasure to	the data nal distri compare	is in the bution. variabi	e form of rati	os or percentage o data sets is th	es. e coefficient
	of v	ariation					1	о од		
	(4) For (5) The	a mode	ion measu	wed dist	provide in	nean-mo formation	ae = 3(1)	mean-median the reliability). of the sample i	nean
					r.c.iae in		. about		or the sumple i	1
•	A person t total distar	ravels the	from one 30 km/h	city to r, 60 kn	another cit n/hr, 40 kı	y on a l n/hr, and	oicycle. I 20 kr	His speeds n/hr, respect	for each of the ively. What is	$\frac{1}{4}$ of the the average
	(1) 20 1	me cyc m/hr	(2)	24 km/ł	nr (3)	30 km/	hr	(4) 32 km/h	r (5) 34 k	m/hr
)	Consider +	he foll	wing ste	temente		10000 00000	0.005		A	0740740R74D
	A -	The co deviati	befficient on is 5.	of varia	tion of a c	lata set i	s 100%	when the n	nean is 5 and 1	the standard
	B - C -	When it dire If the	a constar ctly affec coefficier	nt value ts the v nt of va	is subtract ariability or riation of	ted from of the data s	each c nta set. et is hi	bservation in gh. data are	n a group of o	bservations, t.
	The true	stateme	nt/s from	the abo	ove is/are.			on, and de		
	(1) only	Α.			(2)	only A	and D		(2) 1	

[see page three

[see page four

AL/2021(2022)/31/E-I		- 4 -			
16. Consider the follow	wing statements abo	out rank (Spearman'	s) correlation coef	fficient. wo random variables	i.
B - It meas C - It meas	sures the consistence sures only the non t/s from the above	y of direction in the -linearity of the rel	relationship betw ationship between	een two random varia 1 two random variab	ibles. les.
(1) only A. (4) only B and	C.	(2) only B. (5) all A, B a	and C.	(3) only A and	С.
7. After rolling a dic the dice occur equ above statement?	e for 600 times ur ally likely. Which j	nder the same condi probability approach.	tions, a student s approaches has/ha	tated that the outcom ave been used to mak	es of e the
 (1) Classical application (2) Subjective (3) Relative from (4) Classical application (5) Relative from 	oproach approach equency approach pproach and relativ equency approach	ve frequency approa and subjective appro	ch oach	CIT O	
18. A, B and C are to It is given that h value of 'p'?	hree collectively end $P(A) = 7p^2 - p, P(B)$	xhaustive and mutua $= 1 - 4p + 5p^2$ and P	ally exclusive even $(C) = 1 - 2p$. If $P(C) = 1 - 2p$.	nts in the sample spa $(A) < P(C)$ then what it	ice S is th
(1) $\frac{1}{12}$	(2) $\frac{1}{6}$	(3) $\frac{1}{4}$	$(4)\frac{1}{3}$	(5) $\frac{1}{2}$	
19. If A and B are t of $P(B' A)$?	wo events such the	at $P(A B') = 3P(A B')$	(a) and $P(B') = 2P$	(B) then what is the	valu
(1) $\frac{1}{7}$	(2) $\frac{1}{6}$	(3) $\frac{2}{7}$	(4) $\frac{6}{7}$	(5) $\frac{5}{6}$	
20. The probability events are indep	of occurring event endent and $P(A \cap$	A is four times m B) = p , ($p > 0$) then	uch as occurring what is the value	an event <i>B</i> . If thes of $P(A)$?	e tw
(1) $\frac{1}{4}$	(2) $\frac{p}{2}$	(3) $\frac{\sqrt{p}}{2}$.	(4) 4 <i>p</i>	(5) $2\sqrt{p}$	
21. The random var	iable X has the fo	llowing probability	distribution.		
$\begin{array}{c} X:\\ P(x) \end{array}$	1 2 3 a 0.1 b	4 5 0.3 0.1			
If a and b are mode of the about (1) 0.3	constant terms and ove distribution? (2) 0.4	d it is given that E	[X-5] = -1.8, then (4) 3.2	n what is the value (5) 4	of t
22. Which of the f (1) If X is a	ollowing statemen continuous random	ts is true? variable and b is a	constant then $P(\lambda)$	(X = b) = p where 0 <	p <
(2) The expe	ctation of a discret	te random variable	is always a posit	ive value.	
(3) The mean	and standard dev	iation of a set of I	egative values and with zero mean i	The also negative. is equal to $E[X^2]$.	
(4) The varia	nce of a discrete		$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = 4 Var(V)$		
(5) If X is a	discrete random v	variable, then $Var \begin{bmatrix} -2\\ 2 \end{bmatrix}$	$\begin{bmatrix} + & i \\ 2 \end{bmatrix} = 4 \operatorname{var}(X).$		

[see page five

AL	/2021(2022)/31/E-I - 5 -	
23.	If X follows a binomial distribution with $n = 5$ and $p = 0.4$ then what is $P(X>3)$	X>2)?
	(1) $\frac{870}{6826}$ (2) $\frac{870}{3456}$ (3) $\frac{870}{3174}$ (4) $\frac{3174}{6630}$	(5) $\frac{2304}{3456}$
24.	Customers arrive randomly at a certain bank according to a Poisson distribution of 3 per minute period. What is the probability that at least two customers are interval?	ion at an average ra rive in the 30 second
	(1) $4e^{-3}$ (2) $1 - 4e^{-3}$ (3) $2.5e^{-1.5}$ (4) $1 - 2.5e^{-1.5}$	(5) $1 - 3e^{-1.5}$
25.	A certain company sponsors a bicycle race. Suppose the time it takes to ride to distribution with mean 62.5 minutes and standard deviation of 5 minutes. If to reward only the fastest 27% of the riders of the race, what is the cut o award?	the race has a norm the company decid ff time to receive
	(1) 58.80 minutes (2) 59.45 minutes (3) 63.85 minutes (4) 65.55 minutes	s (5) 66.20 minutes
26.	What is the most appropriate sampling technique for a population with lines	ar trend?
	 (1) Stratified random sampling (3) Systematic sampling (5) Quota sampling (2) Simple random sampling (4) Cluster sampling 	
27	Consider the following statements about sampling	
	 A - Quota sampling is the combination of convenient and stratified sa B - Non-probability sampling occurs when a researcher's goal is to strong interest and be less concerned about generalizing to the total 	ampling. udy a specific samp population.
	C - Non-probability sampling estimates are always worse than that of	probability sampling
	The true statement/s from the above is/are(1) only A.(2) only A and B.(4) only B and C.(5) all A, B and C.	(3) only A and C
28.	Let a random variable Y has a N(μ , 597). What is the Var (y) from a simplicity n=20 without replacement if population size is 200?	ble random sample
	(1) 5.20 (2) 27.00 (3) 27.30 (4) 29.85	(5) 33.00
29.	Consider the following statements about the statistical properties of three es	timators;
	$\theta_1, \theta_2, \text{ and } \theta_3 \text{ of } \mu, \text{ where}$	
	$\hat{\theta}_{1} = \frac{1}{n+1} \sum_{i=1}^{n} X_{i}, \qquad \hat{\theta}_{2} = \frac{1}{n-1} \sum_{i=1}^{n} X_{i}, \qquad \hat{\theta}_{3} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$	
	A - $\hat{\theta}_1$ is biased and more precise than $\hat{\theta}_3$	
	B - $\hat{\theta}_2$ is unbiased and more precise than $\hat{\theta}_1$	
	C - $\hat{\theta}_3$ is unbiased and less precise than $\hat{\theta}_1$	
	The true statement/s from the above is/are,	227 St 164
5	(1) only A. (2) only B. (4) only A and C. (5)' all A, B and C.	(3) only C.
30.	Consider the following statements about the standard error of an estimator.	1 N N
	A - It depends on the sample size.	
	B - It depends on the distribution of the estimator.	
	C - It depends on the values of at least one parameter of the distribut	ition of the estimat
	(1) only A. (2) only B. (4) only A and C. (5) all A B and C	(3) only C.

[see page six

- 6 -AL/2021(2022)/31/E-I 31. A simple random sample is to be taken to estimate the population proportion, P and it is intended to estimate P within ± 0.0196 of the true value at $\alpha = 0.05$. What is the required sample size to estimate P ignoring finite population correction if the population proportion is expected to lie between 0.1 and 0.2? (1) 1000 (2) 1200 (3) 1300 (4) 1500 (5) 1600 32. A random sample of size 9 was selected from a population $N(\mu, \sigma^2)$. What is the point estimate of σ if 90% confidence interval for μ is (12.2, 30.8)? (3) 15 (1) 12 (2) 14 (4) 16(5) 18 33. Consider testing $H_0: P = 0.4$ vs $H_1: P > 0.4$, where P is the probability of observing a head in a single toss of a coin. What is the probability of type I error of the test if H_0 is rejected when there are 7 or more heads in 10 tosses? (1) 0.032(2) 0.041 (3) 0.050 (4) 0.055 (5) 0.172 34. Consider the following statements on the central limit theorem. A - The distribution of sample mean has a normal distribution. B - The distribution of $\frac{\overline{X-\mu}}{\underline{\sigma}}$ is a standard normal distribution as $n \longrightarrow \infty$ C - The sample mean X of a random sample from any distribution with finite variance, σ^2 and the mean, μ , is approximately normally distributed with μ and $\frac{\sigma^2}{n}$ when sample size, n, becomes large. The true statement/s from the above is/are (1) only A. (2) only A and B. (3) only A and C. (5) all A, B and C. (4) only B and C. 35. Consider testing H_0 : $\mu = 15$ vs H_1 : $\mu > 15$ using a random sample size 36 from a N(μ , 9). What is the probability of type II error for a specific H_1 : $\mu = 16$, if the probability of type I error is 0.05? (2) 0.29 (3) 0.35 (1) 0.05 (4) 0.36 (5) 0.95 36. Consider testing H_0 : $\mu = 110$ vs H_1 : $\mu > 110$ using a random sample size 15 from a N(μ , 1500). What is the critical region if the power of the test is 0.8413 and H_1 : $\mu = 125$? (1) $\bar{X} > 115$ (2) $\bar{x} < 120$ (3) $\overline{x} > 135$ (4) $\overline{x} < 148$ (5) $\bar{x} > 148$ 37. Consider testing H_0 : $\mu = 200$ vs H_1 : $\mu < 200$ using a random sample of size 9 from N(μ ,81). What is the sampling distribution of \overline{X} for a specific alternative hypothesis, H_1 : $\mu = 180$? (2) $\overline{X} \sim N(20,9)$ (1) $\bar{X} \sim N(-20,9)$ (3) $\overline{X} \sim N(180.3)$ (4) $\overline{X} \sim N(180,9)$ (5) $\overline{X} \sim N(200,3)$ 38. Consider the following statements about the F-test in Analysis of Variance. A - A required condition for F-test to be used is that the response variable is distributed normally. B - If between group sum of squares is large, value of F-test statistic will be large. C - F-test statistic is the sum of sample variances. The true statement/s from the above is/are (2) only B. (1) only A. (3) only C. (4) only A and B. (5) all A, B and C.

[see page seven

AL/	/2021(2022)/31/E-I			- 7 -				
39.	Consider the following s A - Y_{ij} and ε_{ij} are	tatements abo distributed n	ut An Iormal	alysis (ly.	of Varia	ance model Y	$r_{ij} = \mu$	$+\tau_i+\varepsilon_{ij}$.
	B - Y_{ij} and ε_{ij} bo	th have same	varia	nce.				
	C - Y_{ij} and ε_{ij} bo	th have same	mean	value	8			
	The true statement/s from (1) only A. (4) only A and B.	n the above i	s/are, (2) (5)	only all A	B. , B and	i C.		(3) only C.
40.	A dice was tossed 60 til	mes and the s	summa	ary of	the res	ults is as fol	lows.	
	Value	1	2	3	4	5 6]	
	Frequency	15	13	9	5	11 7		
	The test statistic and the respectively are,	e degrees to f	reedo	m for	the test	H ₀ : fair di	ce vs	H_1 : not a fair dice,
	(1) 5 and 7. (2)	7 and 5.	(3)	7 and	6.	(4) 9 and 5	./	(5) 9 and 6.
41.	Consider the following s	tatements.				S		
	A - The additive t	ime series mod	del ass	sumes t	hat the	components of	of the r	model are independent
	B - The multiplica	ative time seri	es mo	odel as	sumes	that the comp	onents	of the model are of
	C - All the comp	onents of a m	ultipli	icative	time se	eries model a	re exp	ressed in percentages.
	The true statement/s from	n the above i	s/are,					
	(1) only A. (4) only B and C.		(2)	all A	в. , В and	d C.		(3) only A and C.
42.	The estimated trend equa with the origin is 1988, month of October 1994?	tion of sales (and Y is numl	Y) of per of	a comr units	nodity sold pe	is given by Y r year. What	= 360 - is the	+ $36X$ where X is year estimated sale for the
	(1) 47.80 (2)) 48.03	(3)	48.88		(4) 55.00		(5) 58.87
43.	Ratio to trend method for	seasonal indice	s prov	vides go	od resu	lts if,		
	(1) the periods are of(3) the periods are gi(5) the periods are gi	long duration ven monthly. ven in annual	n. (2) (4) ly.) the p) the p	eriods eriods	are given six are damped f	montl fluctuat	hly. lion.
44.	Which component/s of a t	ime series is/a	re atta	ached to	the ter	rm recession?		
	(1) trend(4) trend and seasonal	ann anns anns hear Anns Anns	(2) (5)) seaso) trend	nal and ir	regular		(3) cyclical
45.	Consider the following st	atements.						
2	A - Lower contro assignable ca	l limit indica uses.	ates t	he low	est lin	nit for variat	ion in	the process due to
	B - The vertical each sample.	axis of the co	ontrol	chart	represe	nts magnitudo	e of th	he quality statistic of
	C - If all the sat assignable cat	mple points f uses of variati	all in	the p	e two ocess	control limit of production	ts, the	re is no presence of
	(1) only A.(4) only B and C.	m the above	(2) (5)) only) all A	B. , B an	d C.		(3) only A and B.
				0	(1)			

6.				
	Consider the following statements. A - Sample points falling of the presence of some B - The assignable causes C - Chance variation cannot	outside the three sigma lin assignable causes in the p of variation are due to n ot be reduced with a mod	nits from the mean $(\mu \pm 3\sigma)$ is production process. on-random causes. ification in the process itself.	due to
	The true statement/s from the abo	ove is/are,		
	(1) only A.(4) only B and C.	(2) only B. (5) all A, B and	(3) only A a	nd B
7.	Consider the following statements.	÷.		N.
	 A - The minimum level of Quality Level (AQL). B - The relationship between lot is described by Op C - Rejecting a good quali The true statement/s from the about (1) only A. 	quality acceptable in a given the probability of accepterating Characteristic Currently lot is called consumer by is/are, (2) only B.	ren lot of products is called Acc ing the lot of and the percent do re. s risk. (3) only A a	eptable efective nd B.
	(4) only B and C.	(5) all A, B and	с.	
	The consumer price index for the the real wage index for the period $(1) -62.5$ $(2) -37.5$	se years were 95 and 190 d? (3) 37.5	(4) 62.5 (5) 64	ease in
).	 (3) Marshall-Edseworth's Index (4) Fisher's Index and Laspeyre (5) Laspeyre's index and Marsh Suppose a worker of a factory earn below. 	e's Index nall-Edseworth's Index is daily salary of Rs. 500/=	and his expenditure pattern is a	s given
	Group	Index	Expenditure (Rs.)	
	Food	125	x	
	Clothing	150	200	
8	House rent	160		
	Fuel	200	50	
	If the cost of living index for a	day is 150, and he spe	nds all his income during a d	
	expenses on food and house rent	in rupees, respectively ar	Э,	ay, the
	expenses on food and house rent (1) 142 and 108.	in rupees, respectively ar (2) 143 and 107.	e, (3) 140 and 1	ay, the
	expenses on food and house rent(1) 142 and 108.(4) 145 and 105.	in rupees, respectively ar (2) 143 and 107. (5) 150 and 100.	(3) 140 and 1	ay, the 10.
	expenses on food and house rent(1) 142 and 108.(4) 145 and 105.	in rupees, respectively ar (2) 143 and 107. (5) 150 and 100.	e, (3) 140 and 1	ay, the 10.
5	expenses on food and house rent (1) 142 and 108. (4) 145 and 105.	in rupees, respectively ar (2) 143 and 107. (5) 150 and 100. * * *	e, (3) 140 and 1	ay, the 10.
	expenses on food and house rent (1) 142 and 108. (4) 145 and 105.	in rupees, respectively ar (2) 143 and 107. (5) 150 and 100. * * *	e, (3) 140 and 1	ay, the
	expenses on food and house rent (1) 142 and 108. (4) 145 and 105.	in rupees, respectively an (2) 143 and 107. (5) 150 and 100. * * *	e, (3) 140 and 1	ay, the
5	expenses on food and house rent (1) 142 and 108. (4) 145 and 105.	in rupees, respectively ar (2) 143 and 107. (5) 150 and 100. * * *	e, (3) 140 and 1	ay, the
	expenses on food and house rent (1) 142 and 108. (4) 145 and 105.	in rupees, respectively ar (2) 143 and 107. (5) 150 and 100. * * *	e, (3) 140 and 1	ay, the

Department of Examinations - Sri Lanka

G.C.E. (A/L) Examination - 2021 (2022)

Subject code

Subject

Business Statistics

Marking scheme

Paper I

Question No	Answer No								
01.	3	11.	4	21.	3	31.	5	41.	1
02.	3	12.	4	22.	4	32.	3	42.	3
03.	1	13.	4	23.	3	33.	4	43.	3
04.	3	14.	1	24.	4	34.	4	44.	3
05.	5	15.	4	25.	2	35.	4	45.	2
06.	3	16.	2	26.	1	36.	1	46.	5
07.	2	17.	3	2.7.	2	37.	4	47.	3
08	4	18	3	27.	2	38	1	/18	2
00.	3	10.	4	20.	4	20	4	40	1
09.	 5	19.	5	29.	5		2	49.	
10.	J	20.	J	30.	J	40.	<u></u>	50.	<u> </u>

Special Instruction :

One Mark for One Answer Total Marks 1 × 50 = 50

Paper II

Part I

1. (a) Briefly explain the importance of Business Statistics to a business institute. 1. In order to evaluate the progress of the daily business affairs 2. In order to maintain a high quality in the products, statistical quality control techniques can be applied 3. In order to maintain a stable business quota through market surveys and marketing research. 4. Related to Human Resource Management statistical techniques such as weighted mean, Rank correlation etc.. can be applied in enrolment of employees, training promoting and motivating the employees 5. In order to make important business decisions examining the relationship between various business variables using regression and correlation analysis In order to determine the real values of money values. 6. 7. To Provide in the basis for inferential analis 8. In order to make optimal decisions through uncertainties. (3 marks) (b) Giving reasons, state whether each of the following statements is true or false. (i) Statistics are used to study individual phenomena.

False - Statistics is about studying aggregate of Data

(1 mark)

(ii) In the case of a personal interview method, the interviewer may not be able to bias the responses.

False -The interviewer may be able to bias the responses, if he does not work honestly or strategically.

(1 mark)

(iii) Cumulative frequency percentages of class intervals can be determined directly using Ogives.

False - Ogive is given on the basis of cumulative frequency, not on the basis of cumulate frequency percentage

(iv) It is not always necessary to examine the data before analysis.

False- it is always good to examine the data before analysis since we cannot guarantee the reliability of the data.

Examining the data before analysis is necessary since reliability of data cannot be guarantee

(1 mark)

(c)	Frequency given belo	distribution w.	of marks	obtair	ned by	100 _. st	udents	for a	certain	subject	is	
		Mark inte	rval	0-19	20-39	40-59	60-79	80-9	9	5		

Mark interval	0-19	20-39	40-59	60-79	80-99	
Frequency	10	20	50	15	05	

(i) Draw greater than and less than cumulative frequency curves on the same plot. (03 marks)

"less than" cumulative frequency distribution

Cl : Int.	Frequency	Less than UCB	Cumulative Frequency
		Less than 0.5	0
0 - 19	10	Less than 19.5	10
20 - 39	20	Less than 39.5	30
40 - 59	50	Less than 59.5	80
60 - 79 🗙	15	Less than 79.5	95
80 - 99	05	Less than 99.5	100

" greater than" cumulative frequency distribution

Cl : Int.	Frequency	Frequency LCB			
0 - 19	10	-0.5 or more	100		
20 - 39	20	19.5 or more	90		
40 - 59	50	39.5 or more	70		
60 - 79	15	59.5 or more	20		
80 - 99	05	79.5 or more	05		
		99.5 or more	0		

692

Nursery	Α									
	8	7	6	5	4	3	9	10	11	12
	11	10	9	7	7	8	9	10	7	8
	8	9	10	10	9	8	8	9	9	8
Nursery	В									
	4	5	7	6	6	8	9	10	11	11
	9	10	9	8	7	10	9	8	7	7
	8	9	8	9	9	9	9	9	9	9

(i) Construct stem-and-leaf plot for each data set separately.

(02 marks)

Nursery A

stem	Leaf
0	3 4 5 6 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9
1	0 0 0 0 0 1 1 2

Nursery B

stem	Leaf	
0	4 5 6 6 7 7 7 7 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
1	0 0 0 1 1	

silanka

optional

Stem-and-leaf of B N = 30Leaf Unit = 0.10

Ordered series

inations

(ii)	Construct	box	and	whicker	plot	for	each	data	set	separately	on	the	same	graph.	(03 marks)
------	-----------	-----	-----	---------	------	-----	------	------	-----	------------	----	-----	------	--------	------------

		1	1
	А	В	
$Q_1 =$	7	7	
Q ₂ =	8.5	9	X
Q ₃ =	10	9 0	
Lower Inner Fence Q1 ₋ -1.5(IQR)	7-4.5 = 2.5	=7-3 =4	

Upper Inner Fence Q ₃ +1.5(IQR) Lower Outer Fence Q ₁ -3(IQR)	10+4.5 =14.5 7-9	=9+3 =12 =7-6
Q ₃ +1.5(IQR) Lower Outer Fence Q ₁ -3(IQR)	=14.5 7-9	=12
Lower Outer Fence Q ₁ -3(IQR)	7-9	=7-6
Q1-3(IQR)		-/-0
	= -2	=1
Upper Outer Fence	10+9	=9+6
Q ₃ +3(IQR)	=19	=15
Lower adjacent value	3	4
Highest adjacent value	12	11
Atmen		

(03 marks)

(iii) Compare the shape of the distributions of the two data sets based on the plots. (02 marks)

	Α	В
	$(Q_2 - Q_1)_A$	$< (Q_2 - Q_1)_B$
AL.	$(Q_3 - Q_2)_A$	$> (Q_3 - Q_2)_B$
	L.W.L of	A >L.W.L B
O ^{ex}		
	A is more left skewed th	an B

2. (a) What are the properties of a good central tendency measure? (02 marks)
Properties of a good measure of central tendency
i. It should be a unique measure
ii. It should be rigidly defined
iii. It should be easy to understand
iv. It should be easy to interpret
v. It should represent all observations of the data
vi. It should not be unduly affected by the extreme values
(02 marks)

Basic characteristics of a distribution of data

- i. Central tendency
- ii. Variability (Dispersion)
- iii. Skewness (asymmetry)
- iv. Kurtosis (Flatness/peakedness)

Importance

- Understand the center of the population/ Obtain a representative single measure
- Understand the individual difference between observations of the population .
- Understand the symmetricity of the distribution
- Understand the curvature of the distribution

(05 marks)

(c) The following is a frequency distribution of diseases identified in a health camp attended by 300 individuals. The mean for the data is 2.15. Find the frequencies that correspond to the blanks in the frequency distribution.

No. of diseases	0	1	2	3	4	5	6
Frequency	55		80		30	20	10

(04 marks)

v	f	fre	
A	1	IX	
0	55	0	
1	х	х	.0
2	80	160	
3	У	3у	
4	30	120	2
5	20	100 🥒	
6	10	60	
	300		

 $\Sigma f = 300 \qquad ----1$ $\bar{X} = \frac{\Sigma f X}{\Sigma f} = 2.15 \qquad -----1$

x + y + 195300 = 105(1) $\mathbf{x} + \mathbf{y}$ $\frac{(x+160+3y+120+100+60)}{200}$ = 2.15 300 = 645 ----- (2) x + 3y + 440= 105 = 205 x + 3y1 2y = 100= 50

by substituting y-50 in equation (1)

$$x + 50 = 105$$

 $x - 50 = 105 - 50$
 $x = 55$

(04 marks)

(d) What are the limitations of standard deviation in comparing dispersion of different data sets? (03 marks)

- Standard deviation is inappropriate to compare the variations in data sets with different measuring units, because it is not independent from scale units.
- Even though the standard deviation evaluates the dispersion between the observation, it is not a relative comparison with the central tendency measure.

(03 marks)

(e) The following table shows the data recorded on lifetime of two new electronic products from a market survey.

Lifetime (No. of years)	Product A	Product B
0 - 2	8	6
2 - 4	14	8
4 - 6	12	16
6 - 8	8	11
8 -10	6	8
10 - 12	2	1

(i) Which product has higher mean lifetime?

(02 marks)

		Produ	ct A		· · · ·	C	Р	roduct B		
Х	f	xi	Ui	fiUi	Fu ²	f	xi	Ui	fiUi	Fu ²
0 - 2	8	1	-3	-24	72	6	1	-2	-12	24
2 - 4	14	3	-2	-28	56	8	3	-1	-8	8
4 - 6	12	5	-1	-12	12	16	5	0	0	0
6 - 8	8	7	0	0	0	11	7	1	11	11
8 - 10	6	9	1	6	6	8	9	2	16	32
10 - 12	2	11	2	4	8	1	11	3	3	9
	Σf=50			(-54)	154	Σf=50			10	84

Assumed mean=A=7, C=2, $u = \frac{x-A}{c}$

 $\bar{X} = A + \left(\frac{\Sigma f u}{\Sigma f}\right) \times C$ $= 7 + \left(\frac{-54}{50}\right) \times 2$ = 7 - 2.16 $\bar{X} = 4.84$

 $\overline{X} = A + \left(\frac{\Sigma f u}{\Sigma f}\right) \times C$ $= 5 + \left(\frac{10}{50}\right) \times 2$ = 5 + 0.4 $\overline{X} = 5.4$

The product B has a greater average lifetime

(ii) Which product has less variation of lifetime?

(04 marks)

Product A	Product B
$S^{2} = \left[\frac{\Sigma f u^{2}}{\Sigma f} - \left(\frac{\Sigma f u}{\Sigma f}\right)^{2}\right] \times c^{2}$	$S^{2} = \left[\frac{\Sigma f u^{2}}{\Sigma f} - \left(\frac{\Sigma f u}{\Sigma f}\right)^{2}\right] \times c^{2}$
$= \left[\frac{154}{50} - \left(\frac{54}{50}\right)^2\right] \times 4$	$= \left[\frac{84}{50} - \left(\frac{10}{50}\right)^2\right] \times 4$
$= [3.08 - 1.1664] \times 4$	$= [1.68 - 0.04] \times 4$
= 1.9136 X 4	= 1.64 X 4
$=\sqrt{7.6544}$	$=\sqrt{6.56}$
S = 2.77	S = 2.56
C.V = $\frac{s}{x} \ge 100$ = $\frac{2.77}{4.84} \ge 100$	$C.V = \frac{s}{x} \times 100$ $= \frac{2.56}{5} \times 100$
<u>= 57.23%</u>	5.4 = 47.41%

Product B less variability of lifetime

(04 marks)

3. (a) (i) Why is the Consumer Price Index (CPI) important in the economy of a country? (02 marks)

- (1) To measure changes in general price level of consumer goods (inflation)
- (2) To convert monetary income into real income (deflate)
- (3) To compare the inflation with other countries
- (4) To measure purchasing power of money
- (5) To adjust wage rates, social security payments, rental agreements
- (6) To formulate Monetary, income and wage policies

(ii) List	the indices used to measure the inflation in	n Sri Lanka. (01 mark)
	Indices used to measure the inflation in S	Sri Lanka
	1) National consumer price Index (NC	CPI)
	2) Colombo Consumer Price Index (0	CCPI)
	3) GDP deflator	
	4) Producer's Price Index	
	5) Whole sale price index	
		(01 mark
(iii) Con Pric	npare Colombo Consumer Price Index (CCP e Index (NCPI).	PI) and National Consumer (04 marks)
_	Colombo Consumer Price Index - CCPI Base Year 1952 2002 2006/07 2013	National Consumer Price Index - NCPI Base Year 2013
•	Base Year 1952, 2002, 2006/07, 2013 393 consumer items under 12 major groups	Base Year 2013 407 consumer items under 12 major groups
•	are considered.	are considered
•	are considered. Prices are collected from 14 price collection centers from urban areas of Colombo district	are considered Prices are collected from 3 price collecting centers in each district in Sri Lanka
•	are considered. Prices are collected from 14 price collection centers from urban areas of Colombo district Food items and non-food items have been weighed as 24% and 76% respectively	are considered Prices are collected from 3 price collecting centers in each district in Sri Lanka Food items and non-food items have been weighed as 44% and 56% respectively
•	are considered. Prices are collected from 14 price collection centers from urban areas of Colombo district Food items and non-food items have been weighed as 24% and 76% respectively Laspeyres' formula is used	are considered Prices are collected from 3 price collecting centers in each district in Sri Lanka Food items and non-food items have been weighed as 44% and 56% respectively Modified Laspeyres' formula (Two stage) is used

(b) Calculate Fisher's Ideal Index for price using the data given in the following table.

Commeditor	Bas	e year	Current year		
Commonly	Price	Quantity	Price	Quantity	
А	10	40	12	50	
В	12	25	15	20	
С	15	10	20	12	
D	20	5	30	2	

(03 marks)

Item	po	qo	p _n	q _n	po qo	p _n q _o	p _n q _n	p _o q _n
А	10	40	12	50	400	480	600	500
В	12	25	15	20	300	375	300	240
С	15	10	20	12	150	200	240	180
D	20	5	30	2	100	150	60	40
					950	1205	1200	960

$$FP_{n/o} = \sqrt{\frac{\sum P_n q_o}{\sum P_o q_o} \times \frac{\sum P_n q_n}{\sum P_o q_n} \times 100}$$
$$= \sqrt{\frac{1205}{950} \times \frac{1200}{960}} \times 100$$
$$= 125.9$$

(03 marks)

(c) (i) State the importance of studying the trend component of a time series. (02 marks)

Importance of studying the trend component of a time series.

- 1. to forecast past patterns/ trend .
- 2. to make production plans and sales plans.
- 3. to assess the need and feasibility of expanding the business.
- 4. to make optimal business decisions comparing similar variables in the form
- and with similar variables in other firms.
- 5. To describe (historical) the long-term behavior of a variable

(ii) Mention two methods to measure the trend and list two advantages of each method. (02)

(02 marks)

1. Free Hand Method

Advantages

- 1. Ability to obtain a rough idea regarding the trend of the variable at a glance.
- 2. Being Free from complicated calculations.
- 3. simplest and flexible method

2. Semi Average Method Advantages

- 1. A unique (identical) trend can be identified, because a simple mathematical technique is applied
- 2. This method is not subjective.

3. Least square Method

- 1. trend can be derived minimizing the errors
- 2. Highly appropriate for forecasting.
- 3. Unique trend can be identified

4 Moving Average Method

,eQ2

- 1. Useful in reducing random variation
- 2. Deriving a smooth trend Line which is more practical.
- 3. reduces the effect from extreme vales
- 4. A simple mathematical technique.

~eQ'

(iii) Explain cyclic variation considering the four main stages of a business cycle. (02 marks)

Cyclical variations refer to the long term oscillations about a trend line

A business cycle is a cycle of a fluctuation in a macro variable (i - e. GDP) around its long-term trend. It explains **expansion** and **contraction in** economic activities that an economy experiences over time.

The four main stages of a business cycle is shown in the diagram below

Phases: Prosperity, recession, depression, and recovery

(02 marks)

(d) Quarterly sales (in thousand rupees) of a commodity are given in the following table.

		Quarter	rly Sales	
Year	I	п	III	IV
2007	46	40	39	38
2008	38	34	32	25
2009	51	28	28	33

Calculate seasonal index for each quarter using the simple average method and comment on the values. (04 marks)

		Quarter	ly Sales		
Year	I	II	=	IV	
2007	46	40	39	38	
2008	38	34	32	25	
2009	51	28	28	33	
total	135	102	99	96	
Quarterly average	45	34	33	32	36
Grand average	36	36	36	36	
Seasonal Index	45/36*100 .= 125	34/368*100 94.4444	33/36*100 91.66667	32/36*100 88.88889	400

Comment:

Comment: quarterly sales decline over the seasons (Quarters).

In the first quarter, Seasonal index of 125 indicates that quarter I had 25% more sales than the seasonal average sales. However, the quarter II, III and IV had 6%, 8% 12% less than seasonal average sales, respectively.

(04 marks)

4. (a) Why do we need visual inspections of data as the first step in regression analysis? (01 mark)

A visual inspection of data is needed as the first step in regression analysis,

1. To identify whether there is a relationship

Department

- 2. If there is a relationship to identify the relationship whether the relationship is deterministic or not deterministic
- 3. If it is not deterministic, to identify the nature of the relationship

(01 mark)

(b)	In order to pred experience, the r of 12 salesmen. experience (in ye	lict th manag Their ears) a	e per er of recor as foll	forma a la ded a ows.	nce c rge fu nnual	of sale irnitur sales	es em re stor value	ployed re sel- s (in	es bas ected ten th	sed or a ran nousan	n thei dom d) an	r sale sample d sale	S B S	
	Sales person	1	2	3	4	5	6	7	. 8	9	10	11	12	
	Sales experience (X)	2	2	1	1	5	-5	3	4	4	3	8	10	
	Annual Sale (Y)	20	13	8	10	71	60	32	91	30	31	101	61	

(i) Draw a scatter plot for the above data and comment on the possible relationship between two variables.

Comment:

- Scatter diagram shows that the relationship between X and Y is non deterministic, it is stochastic
- There are various possible relationships that can be thought from the scatter diagram.

(ii) The estimated equation for the regression line using least square method for the above data is as follows.

 $\hat{Y} = 8.98 + 2.46 X$

Interpret of the estimated slope coefficient and intercept.

(02 marks)

<u>Slope coefficient = 2.46</u>

 $\frac{\partial \hat{E}(Y|X)}{\partial X} = 2.46$

When X increase by one unit (sales person gets one year experience) annual sales value on average would increase by 24600 rupees.

Intercept

$$\hat{\beta}_0 = 8.98$$

$$\widehat{E}(Y|X=0) = 8.98$$

when sales employees have no experience, the annual sales on average would be Rs. 89800.

(02 marks)

(iii) If R^2 for the above estimated regression line is 0.56, interpret the value. (01 mark)

56% of the total variability of annual sales is explained by sales employees' experience

(01 mark)

(01 mark)

(iv) Comment on predicting the sales of a person with 15 years of experience by using estimated regression line.

It is not appropriate to do extrapolation based on the estimated sample regression line, since 15 years is out of the sample domain.

(c) (i) Give the situations for which each of the methods Pearson's correlation coefficient and Spearman's rank correlation coefficient is appropriate. (01 mark)

	Pearson's correlation	Spearman's correlation
relationship	Linear relationship	Consistent/directional relationship
Data type	interval /ratio	Ordinal/ interval

(**01 mark**)

	1			1.1			1		<u> </u>	
Handcraft	~1	2	3	4	5	6	7	8	9	10
Judge A	5	8	4	Ģ	8	9	6	7	2	3
Judge B	7	6	5	9	5	7	- 8	4	2	1

Calculate Spearman's rank correlation coefficient and comment on the value. (03 marks)

 d^2 Handcraft Judge B Judge A d r_1 r_2 5 7 7 3.5 3.5 12.25 1 2 2.5 8 2.5 6.25 6 5 4 1.5 2.25 3 8 5 6.5 4 9 4.5 20.25 6 5.5 1 5 2.5 5 4 8 6.5 16 9 1 7 3.5 2.5 6.25 6 7 6 5.5 8 2 3.5 12.25 4 4 8 7 8 4 16 9 9 2 10 2 1 1 10 3 9 1 10 1 1 93.5

$$\gamma_{k} = 1 - \frac{6 \Sigma d^{2}}{n(n^{2} - 1)}$$
$$= 1 - \frac{6 \times 93.5}{990}$$
$$= 1 - \frac{561}{990}$$
$$= 1 - 0.567$$
$$\gamma_{k} = 0.433$$

epain

The estimated correlation coefficient indicates that two judges' decisions are moderately/weakly associated.

(03 marks)

(01 mark)

(d) (i) State the uses of R-chart in statistical quality control?

1. R chart is used for controlling quality dispersion (variability) of the product in a process.

2. To examine the validity of \overline{X} chart

(03 marks)

(ii) List four types of pattern that indicate a process which is out of control. (02 marks)

- when one or more points falling outside the control limits
- when 3 or more successive points follow a certain pattern
- When majority of sample points fall close to any of the two control limits (upper control limit or lower control limit)
- A series of several sample points showing a trend
- A series of long run of consecutive sample points falling above or below the central line

Sample 1umber	1	2	3	4	5	6	7:	8	9	10	11	12
lumber of lefective tems	3	4	3	7	8	5	4	4	8	2	1	5

	Sample number	Number of defective items	Proportion of defectives
	1	3	0.06
4	2	4	0.08
2	3	3	0.06
	4	7	0.14
\sim	5	8	0.16
\bigcirc	6	5	0.1
•	7	4	0.08
	8	4	0.08
	9	8	0.16
	10	2	0.04
	11	1	0.02
	12	5	0.01

$$\bar{P} = \frac{54}{12 \times 50} = 0.09 = CL$$

$$UCL = \bar{P} + 3\sqrt{\frac{\bar{P} (1-\bar{P})}{n}}$$

$$= 0.09 + 3\sqrt{\frac{0.09 \times 0.91}{50}}$$

$$= 0.09 + 3 \times 0.040$$

$$= 0.09 + 0.12$$

$$= 0.09 + 0.12$$

$$= 0.09 - 3\sqrt{\frac{\bar{P}(1-\bar{P})}{n}}$$

$$= 0.09 - 3\sqrt{\frac{0.09 \times 0.91}{50}}$$

$$= 0.09 - 0.12$$

$$LCL = -0.03 \equiv \simeq 0$$

P chart

The process is under control, since all the points fall within the control limits

(03 marks)

sil anko

(ii) Explain the importance of Operating Characteristic (OC) curve.	(02 marks)

- 1. ability to discriminate good lot and bad lot
- 2. ability to decide how successful of sampling plan
- 3. ability to know consumer's risk and producers.

(02 marks)

(iii) Suppose a company has received a large lot of items. It has been decided to use an acceptance sampling plan to examine whether the lot is acceptable. If the acceptance number is 3 for a random sample of 150 items, calculate the acceptance probability at each of the defective percentages 1% and 4%. (02 marks)

n = 150 C = 3

Q	Defective proportion	$\lambda = np$	Probability of accepting					
	0.01	1.5	$0.22 \ 31 + 0.3347 + 0.2510 + 0.1255 = \underline{0.9343}$					
	0.04	6	$\begin{array}{l} 0.0025 + 0.0149 \\ + 0.0446 + 0.0892 \\ = \underline{0.1512} \end{array}$					

Part II

5. (a) (i) Distinguish probability of an event from conditional probability of an event. (02 marks)

Probability :

Probability is a measure of the likelihood of occurrence of an uncertain event

Conditional probability

Conditional probability is a measure of the probability of an occurring event given that another event has already occurred.

(02 marks)

(ii) Determine whether the two events A and B are exhaustive, if

$$P(A) = \frac{4}{7}, P(B) = \frac{4}{5} \text{ and } P(A' \cap B) = \frac{3}{7}.$$
(02 marks)

$$P(A) = -\frac{4}{7}, P(B) = -\frac{4}{5}, P(A' \cap B) = \frac{3}{7}$$

$$P(\hat{A}' \cap B) = P(B) - P(A \cap B)$$

$$\frac{3}{7} = -\frac{4}{5} - P(A \cap B)$$

$$P(A \cap B) = -\frac{4}{5} - \frac{3}{7} = -\frac{28 - 15}{35}$$

$$= -\frac{13}{35}.$$
If A, B are exhaustive events, $P(A \cup B) = 1$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 1$$

$$P(A \cup B) = \frac{4}{7} + \frac{4}{5} - \frac{13}{35} = \frac{20 + 28 - 13}{35} = \frac{35}{35} = 1$$

Therefore A, B are exhaustive events

(iii) Let A and B are two events of a sample spaces S.
If
$$P(A \cap B') = \frac{21}{100}$$
, $P(A' \cap B') = \frac{13}{50}$ and $P(A \cap B)' = \frac{16}{25}$,
find $P(B)$, $P(B|A)$ and $P(A'|B)$.
(03 marks)

$$P(A' \cap B') = P(A \cup B)' = 1 - P(A \cup B) = \frac{13}{50}$$

$$1 - P(A \cup B) = \frac{13}{50}$$

$$P(A \cup B) = 1 - \frac{13}{50} = \frac{37}{50}$$

$$P(A \cap B)' = 1 - P(A \cap B) = \frac{16}{25}$$

$$P(A \cap B)' = 1 - P(A \cap B) = \frac{16}{25}$$

$$P(A \cap B)' = 1 - P(A \cap B) = \frac{21}{100}$$

$$P(A \cap B') = P(A) - P(A \cap B) = \frac{21}{100}$$

$$P(A) = \frac{21}{100} + \frac{9}{25} = \frac{21 + 36}{100} = \frac{57}{100}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{37}{50}$$

$$\frac{57}{100} + P(B) - \frac{9}{25} = \frac{37}{50}$$

$$* P(B) = \frac{37}{50} + \frac{9}{25} - \frac{57}{100} = \frac{74 + 36 - 57}{100} = \frac{53}{100}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} =$$

$$P(B|A) = \frac{9/25}{57/100} = \frac{36}{57}$$

$$P(A'|B) = \frac{P(A' \cap B)}{P(B)} = \frac{P(B) - P(A \cap B)}{P(B)} = \frac{\frac{53}{100} - \frac{9}{25}}{\frac{53}{100}} = \frac{17}{53}$$

(03 marks)

(b) A Statistics Association in a certain country studied whether there is an association between students' status of interest in Statistics and their A/L subject stream using a random sample of 300 students. Summary of the data is given below.

Status of Interest	A/L subject stream								
in statistics	Arts	Commerce	Science						
Interested	50	66	32						
Not interested	74	37	41						

	Arts	Com	Sc	
Ι	50	66	32	148
NI	74	37	41	152
	124	103	73	300

n = 300

(i) Calculate the probability that a randomly selected student is from commerce subject stream. (02 marks)

$$\frac{103}{300} = 0.343$$

(02 Marks)

(ii) Calculate the probability that a randomly selected student is interested in Statistics, given the student is from Arts subject stream. (02 marks)

$$P(I|A) = \frac{P(I \cap A)}{P(A)} = \frac{50/300}{124/300} = \frac{50}{124} = 0.403$$

(02 Marks)

(iii) Determine whether the A/L subject stream is independent from the status of interest in Statistics. (02 marks)

First Method

$$P(Arts) = P(A) = \frac{124}{300}$$

 $P(Interest to Statistics) = P(I) = \frac{148}{300}$

$$P(A \cap I) = \frac{50}{300} \neq P(A)P(I) = \left(\frac{124}{300}\right) \left(\frac{148}{300}\right)$$

: Not independence

Second Method

If P(I|A)=P(I) A and I are independent event.

From (ii) P(I|A)=50/124. From the data P(I) = 148/300. Since $P(I|A)\neq P(I)$, A and I are not independent.

0.

Subject stream is not independent from the status of Interest in statistics

(02 Marks)

(c) A multinational company is planning to start a subsidiary in a certain country. The management of the company realizes that the success of the new subsidiary depends on the political situation in the target country. The management estimates that the probability of success of the subsidiary is 0.64 if the prevailing political situation is favourable, 0.28 if the political situation is neutral and 0.12 if the political situation is unfavourable during the year. The management further believes that the probabilities of favourable and unfavourable political situations are 0.54 and 0.21 respectively.

- NS = not success
- F Favourable
- N Neutral
- U Unfavorable -

P(S|F) = 0.64 P(S|U) = 0.28

0.25

P(S|F) = 0.12

- P(F) = 0.54
- P(N) = 0.25P(U) = 0.21

- B B being non-defective
- C C being non-defective

P(A') = 0.1, P(A) = 0.9

 $P(B') = 0.15, \quad P(B) = 0.85$

 $P(C') = 0.2, \quad P(C) = 0.8$

(03 Marks)

(a) (i) Distinguish a binomial experiment from a binomial random variable.

Binomial Experiment

6.

- 1. It is a random experiment
- 2. It consists of n identical trials (Bernoulli trials)
- 3. Each trial results in one of the two mutually disjoint outcomes called success or failure.
- 4. Number of trials is finite/fixed)
- 5. The probability of a success (p) or failure (1-p) remains same (constant) in each trial.
- 6. The trials are independent, hence the outcomes of the trials are independent

Binomial Random variable

A random variable (X)which follows binomial probability distribution is called a binomial random variable.

(02 Marks)

(ii) State characteristics of the binomial probability distribution.

Characteristics of the Binomial probability distribution

Let X be number of success out of *n* trials

- i. Binomial distribution has two parameters (n, p)
- ii. The mean of the binomial distribution is E(x) = np
- iii. (The variance of the distribution, V(x) = npq where q = 1 p.
- iv. If P(x) = 0.5, X has symmetric distribution
- v. Binomial distribution tends to normal distribution as n increases
- vi. If n >50 and p<0.1, Binomial RV $X \sim Po(np)$
- vii. If n>10 and p close to 0.5 the Bin RV X ~N (*np*, *npq*)
- viii. If n>30 the Bin RV X ~N (*np*, *npq*)

(02 Marks)

(b) Suppose the probability of success of a mobile salesman at a household is 0.2.

X = Number of successes in visiting n households

n = 5 = Number of households

Probability of success = 0.2, q=0.8,

(i) What is the probability that the salesman will be successful at two households out of five households?

$$P (X = 2) = \frac{5}{c(0.2)^2(0.8)^5}$$
$$= \underline{0.2048}$$

(01 mark)

(01 mark)

(ii) What is the probability that the salesman	will be successful in at least two	
households out of five households?	(02 ma	ırks)

P(X≥ 2) = 1 - P [X< 2]
= 1 - [P(X = 0) + P (X =01)]
= 1 - [0.3277 + 0.4096]
= 1 - 0.7373
=
$$0.2627$$

(02 marks)

(iii) What are the assumptions that you take to calculate the above probabilities? (01 mark)

Assumptions

- 1) Number of household visiting is fixed
- 2) Probability of success each household is same
- 3) Tested households are independent from each other
- 4) Outcome at each household is success or failure

(c) (i) State three examples for a Poisson random variable. (02 marks) Examples for a Poisson Ramona Variable (1)# of accidents in particular junction in an hour. (2)# of calls come to a telephone exchange 10 miniature # of customers arrive to a bank within a period of 1 hour (3) (4) # of errors in a page (5) # of defects within 1 meter length of cloth (02 marks) (ii) What conditions are required for Binomial distribution to be approximated (01 mark) by the Poission distribution? \rightarrow Poisson(np) Condition **Bin** (**n**, **p**) - $X \sim Po(np)$ i) N > 50 ii) **P** small (P < 0.1) (01 mark) (iii) Let X~Bin(100, 0.05). Find P(X=3) using the normal and Poisson approximation. [Assume $\sqrt{4.75} \approx 2$] (03 marks) **Using Normal approximation** $X \sim Bin(100, 0.05)$ Condition and $P \approx 0.5$ (1) n > 10or (2) n > 30or np = 100(0.05)=5(3) $np \ge 5$ or $nq \ge 5$ npq = 100 (0.05)(0.95)=0.475 $X \sim N(np, npq)$ $\sqrt{npq} = \sqrt{4.75} = 2.179 \approx 2$ $X \sim (5, 4.75)$ P (X =3) = P (2.5< X <3.5) = P[$\frac{2.5-5}{\sqrt{4.75}} < Z < \frac{3.5-5}{\sqrt{4.75}}$] $= P[\frac{-2.5}{\sqrt{4.75}} < Z < \frac{-1.5}{\sqrt{4.75}}]$ $= P[\frac{-2.5}{2} < Z < \frac{-1.5}{2}]$ = P[-1.25 < Z < -0.75]= 0.227 - 0.106= 0.121

Using Poisson approximation

When n > 50, P < 0.1, we can use Poisson approximation

$$\lambda = np = 100(0.05) = \underline{5}$$

$$X \sim Po(5)$$

$$P(X = x) = \underline{e^{-5} 5^{x}}$$

$$x_{1}$$

$$P(X = 3) = \underline{e^{-5} 5^{3}}$$

$$3!$$

$$= 0.1404$$

Since $n \approx \text{large with } P \approx \text{Small}$ n > 50, P < 0.1, This is good approximation

(03 marks)

(d) (i) State the descriptive methods for examining normality of a data set.	(02 marks)
· (O)	
Descriptive methods of testing normality	
1. Empirical rule	
$\overline{X} \pm 1SD$ 68 %	
$\overline{X} \pm 2SD$ 95 %	
$\overline{X} \pm 3SD$ 99 %	
2. Histogram	
3. Stem and leaf plot	
4. Box Plot	
5. normal probability plot	
$6. \frac{IQR}{SD} \cong 1.35$	
7. kurtosis and skewness	
	(02 marks)

(ii)	The mean and standard	deviation of marks of an examination are 72 and 9,	
	respectively. If the top	10 % of students are to receive A grades, determine	
	the cutoff mark for the	grade assuming marks are distributed normally.	(02 marks)

 $X \sim N (72, 9^2)$ $P(z \ge a) = 0.1$ a = 1.28 $\frac{X-72}{9} = 1.28$ X = 72 + 1.28 (9) = 83.5 cutoff marks

(02 marks)

(iii)	Using th	ne above	distribution	of	marks,	find	k	if P	[X -	72 > k]	= 0.05.	(02 marks)
-------	----------	----------	--------------	----	--------	------	---	------	-------	----------	---------	------------

P(|X - 72| > k) = 0.05

$$P(|X - 72| > k) = 0.05$$

$$P\left(\left|\frac{X - 72}{9}\right| > \frac{k}{9}\right) = 0.05$$

$$P(|Z| > a) = 0.05$$

$$P(|Z| > 1.96) = 0.05$$

$$P(Z > 1.96) + P(Z < -1.96) = 0.05$$

Where $\frac{k}{9} = a = 1.96$
 $k = 1.96(9)$

K=17.64

7. (a) A random sample consisting units
$$X_1, X_2, X_3, X_4$$
 and X_4 was drawn from a normally distributed population with unknown mean, μ and variance, σ^2 . Suppose following estimators are suggested to estimate the population mean μ .
 $T_1 = \frac{X_1 + X_2 + X_4 + X_4}{5}, T_2 = \frac{X_1 + X_3}{2} + X_3, T_3 = \frac{2X_3 + X_3 + kX_3}{3}$
 $T_1 = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$
 $T_2 = \frac{X_1 + X_2}{2} + X_3$
 $T_3 = \frac{2X_1 + X_2 + X_3}{5}$
(i) Find whether T_1 and T_2 are unbiased estimators of μ . (02 marks)
 $T_1 = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$
 $E(T_1) = \frac{E(X_1) + E(X_2) + E(X_3) + E(X_4) + E(X_5)}{5}$
 $E(T_1) = \frac{E(X_1) + E(X_2) + E(X_3) + E(X_4) + E(X_5)}{5}$
 $E(T_1) = \frac{5\mu}{5} = \mu$
 T_1 is unbiased
 $T_2 = \frac{X_1 + X_2}{2} + X_3$
 $E(T_2) = \frac{E(X_1) + E(X_2)}{2} + E(X_3)$
 $E(T_2) = \frac{E(X_1) + E(X_2)}{2} + E(X_3)$

Confidential

(01 mark) (ii) Find the value of k such that T_3 is an unbiased estimator of μ . $T_3 = \frac{2X_1 + X_2 + kX_3}{3}$ $E(T_3) = \frac{2E(X_1) + E(X_2) + kE(X_3)}{3}$ $E(T_3) = \frac{2\mu + \mu + k\mu}{3} = \mu$ $2\mu + \mu + k\mu = 3\mu$ $k\mu = 0$ since $\mu \neq 0$ (01 mark) (iii) Consider an estimator T given by $T = l_1 T_4 + l_2 T_5$, where l_1, l_2 are constants and T_4 and T_5 are unbiased estimators of μ . Show that $l_1 + l_2 = 1$ when T is (02 marks) an unbiased estimator of μ . $T = l_1 T_4 + l_2 T_5$, T₄, T₅ are unbiased $E(T) = l_1 E(T_4) + l_2 E(T_5)$ $E(T) = l_1 \mu + l_2 \mu = \mu$ $E(T) = (l_1 + l_2)\mu = \mu$

(02 marks)

(b) In an examination a student received 62 and 48 marks for two subjects Statistics and Economics respectively. The mean and variance for the marks of Statistics are 50 and 36 respectively, whereas mean and variance for the marks of Economics are 42 and 4 respectively. Using Z score, compare performance of the student for the two subjects. (02 marks)

Statistics $\mu = 50$ $\sigma^2 = 36$ Economics $\mu = 42$ $\sigma^2 = 4$

 $l_1 + l_2 = 1$

subjectmarksz scorezstat62 $\frac{62-50}{6}$ $\frac{12}{6}=2$ Econ48 $\frac{48-42}{2}$ $\frac{6}{2}=3$

Since Z score for Economics is higher than that for Statistics,

the student has performed better in economics (z = 3), than in Statistics (z = 2).

Both distributions are positively skewed. But median distribution has a higher skewness

(ii) State the uses of these distributions in inferential analysis. (04 marks)

Sampling distributions of sample mean (\bar{y}) and sample median (m) provides information about the corresponding parameters in the inferential analysis (Confidence interval,

hypothesis testing),

- 1. Probability distributions of sample mean is used for the inferential analysis of population mean.
- 2. Probability distribution of sample median is used for the inferential analysis of population median

(04 marks)

Estimators	Expected value	Variance
\bar{y}	5.00	8.66
m	4.56	20.91

Population values

Population mean, $\mu = (0+3+12)/3=5$

E(y)=5Var(y)=128

Sample statistics

Given $E(\bar{y}) = 5$

Since $\mu = E(\bar{y})$, the ybar is an unbiased estimator.

E(med) = 4.56

$$V(\bar{y}) = 8.67$$
 SD = 2.94
V(m) = 20.91 SD = 4.57

i. m is biased estimator of mean

ii. \bar{y} is unbiased estimator of mean

iii. \bar{y} has minimum variance

 $Var(\bar{y}) < Var(m)$ 8.67 < 20.91

(d) Show that the \bar{y} from simple random sampling without replacement is more precise than \bar{y} from simple random sampling with replacement. (02 marks)

with replacement	without replacement
$E(x) = \mu$	$E(x) = \mu$
$Var(x) = \frac{o2}{n}$	$\operatorname{Var}\left(\mathbf{x}\right) = \frac{\mathrm{o2}}{n} \left(\frac{N-n}{N-1} \right)$

 $\frac{\sigma^2}{n} > \frac{\sigma^2}{n} \frac{N-n}{N-1}$ Since n > 1, N - 1 > N-n

$$\frac{N-n}{N-1} < 1 \implies \frac{\sigma_2}{n} \frac{N-n}{N-1}$$

Therefore sampling without replacement is more precise than sampling with replacement

(02 marks)

(e) Sales profit from a specific product was studied using a simple random sample of 35 sales centers. From this sample, a sub sample of size 20 was also studied. Let the means from the sub-sample of size 20 and the balance 15 are y_1 and y_2 respectively. Moreover, let the mean from the total sample is \bar{y} , assume $\sigma^2 = 200$. (i) Find $Var(\bar{y}_1 - \bar{y}_2)$. (02 marks) From the sampling theory $V(\bar{y}) = \frac{\sigma^2}{n}$ Total sample size = n = 35Sample mean = \overline{y} $= n_1 = 20$ Sub sample 1 Sub sample mean = \bar{y}_1 Sub sample 2 size $= n_2 = 15$ Sub sample mean = \bar{y}_2 $\operatorname{Var}(\overline{y}_1, \overline{y}_2) = \operatorname{Var}(\overline{y}_1) + \operatorname{Var}(\overline{y}_2)$ (i) because sub samples are independent $\operatorname{Var}(\overline{y_1}, \overline{y_2}) = \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}$ $= \sigma^2 \left[\frac{1}{n_1} + \frac{1}{n_2} \right]$ $200\left[\frac{1}{20}+\frac{1}{15}\right]$ = 23.33

What extra information would you need to consider in the calculation of (ii) (01 mark) $Var(\bar{y}_1 - \bar{y})$, compared to that of part (i)? Sub sample mean \bar{y}_1 is not independent from the total sample mean \bar{y} $Var(\bar{y}_1 - \bar{y}) = Var(\bar{y}_1) + Var(\bar{y}) - 2cov(\bar{y}_1, \bar{y})$ To find $Var(\bar{y}_1 - \bar{y})$ Non independence of \bar{y}_1 and \bar{y} (01 mark) 8. (a) Giving reasons, state whether each of the following statements is true or false. (i) Probability of type I error is calculated using the distribution of test statistic (02 marks) under the null hypothesis. 1. True $P(Type \ I \ error) = P(Reject \ H_0 | H_0 is \ true)$, thus Probability of Type I error is calculated

(02 marks)

(ii) Precision of sample mean depends on the sample size. (02 marks)

2. True

using H0 distribution.

Precision of sample mean is measured by variance of the sample mean $Var(\bar{X}) = \frac{\sigma^2}{n}$, therefore the precision depends on sample size.

(02 marks)

(iii) By increasing the sample size, power of the test can be increased without changing the probability of type I error. (02 marks)

3. True

When sample size (n) increase $SE(\overline{X})$ will be decreased so that the cutoff point (CV) in terms of absolute value will be smaller. thus P(Type II) become smaller. So that power is increasing.

X	Occured	Not occured
Vaccinated	10	150
Not Vaccinated	10	30

i. H_o : Vaccination has no impact on occurrence the disease

H_1 : vaccination has impact on occurrence the disease

(01 mark)

(01 mark)

(ii) State the test statistic and its distribution.

 $TS = \chi^{2} = \sum \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} \text{ or } \mathcal{Z} = \frac{\hat{P}_{1} - \hat{P}_{2}}{SE(\hat{P}_{1} - \hat{P}_{2})} = \frac{\hat{P}_{1} - \hat{P}_{2}}{\sqrt{\hat{P}(1 - \hat{P})\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$ $TS \sim \chi^{2}_{(r-1)(c-1)} \text{ or } TS \sim \mathcal{Z} \sim n (0,1)$ $TS \sim \chi^{2}_{1}$

(01 mark)

(iii) Test whether the vaccination has an impact on the status of occurrence of Covid-19 at 5% significant level. (03 marks)

	Yes	No	
Vacc	10	150	160
No Vaccin	10	30	40
	20	180	200

Y X	Occurred	Not Occurred	Total
Vaccinated	$\frac{10}{200} = 16$	$\frac{150}{200} = 144$ (144)	160
Not vaccinated	$\frac{10}{200} = 4$	$\frac{40x180}{200} = 36$	40
Total	20	180	

i Lanka

0	Е	(O-E)	(O-E ⁾²	$\frac{\left(O_{ij}-E_{ij}\right)^2}{E_{ij}}$
10	16	-6	36	2.25
150	144	6	36	0.25
10	4	6	36	9
30	36	6	36	1
				12.5

Test Statistic = $\chi^2 = 12.5$

df =
$$(r - 1) (c - 1)$$

$$= (2 - 1) (2 - 1)$$
$$= 1$$

 $CV x^2 = x_{1,0.05}^2 = 3.84$

Decision rule:

As TS>CV, we reject Ho : No association at 5% significant level.

Sample evidence shows that vaccination has an impact on the status of occurrence of Covid-19

at
$$\alpha = 0.05$$

Alternative answer

$$\begin{split} H_{0}: \quad P_{1} = P_{2} \\ H_{1}: \quad P_{1} < P_{2} \\ \text{Test statistic} \quad \mathbb{Z} = \frac{\hat{P}_{1} - \hat{P}_{2}}{SE(\hat{P}_{1} - \hat{P}_{2})} = \frac{\hat{P}_{1} - \hat{P}_{2}}{\sqrt{\hat{P}(1 - \hat{P})(\frac{1}{n_{1}} + \frac{1}{n_{2}})}} \\ \hat{P}_{1} = \frac{10}{160} , \quad \hat{P}_{2} = \frac{10}{40} , \quad \hat{P} = \frac{10 + 10}{160 + 40} = \frac{20}{200} = 0.1 , \quad \hat{q} = 1 - \hat{p} = 0.9 \\ n_{1} = 160 \\ n_{2} = 40 \\ \hat{P}_{1} - \hat{P}_{2} = \frac{10}{160} - \frac{10}{40} = \frac{10 - 40}{160} = \frac{-3}{16} = 0.1875 \\ \mathbb{Z} = \frac{-0.1875}{\sqrt{(0.1)(0.9)(\frac{1}{160} + \frac{1}{40})}} \\ = \frac{-0.1875}{\sqrt{(0.1)(0.9)(\frac{1}{160} + \frac{1}{40})}} = \frac{-1.1875}{0.05303} = -3.5357 \\ \mathbb{Z}_{0.05} = 1.65 \end{split}$$

Since $|\mathbf{Z}| > \mathbf{Z}_{\alpha}$, H_0 is rejected at 5% level. Thus $P_1 < P_2$

 \therefore There is an impact of vaccination

(03 marks)

(c) The Managing Director of a firm wanted to determine whether three different training programs have different effects on employees' proficiency level. Accordingly, he selected 14 employees and assigned 4 employees to the program I, and 5 each for the other two programs II and III randomly. Upon completion of the training, each employee was given a test to assess his/her proficiency. The test scores were analysed and the output from the analysis is given below.

Source	df	Sum of Square	Mean Square
Between samples	2	65.71	32.85
Within samples			
Total		251.71	

(i) Fill the blanks in the above table.

Source	DF	SS	MS
Between sample	2	65.71	32.85
within sample	11	186	16.909
Total	13	251.71	

(02 marks)

(02 marks)

(ii)	State the	hypotheses	H_0 and	H_1	for	the	test.	(01 mark)
------	-----------	------------	-----------	-------	-----	-----	-------	-----------

 $\mathrm{H}_{\mathrm{O}}: \mu_{1} = \mu_{2} = \mu_{3}$

 H_1 : at least two of the means are different

(01 mark)

(iii) State the assumptions that are required to perform this analysis. (02 marks)

Assumptions

3)

- 1) Population is normally distributed, Population Variances are equal $(Y_i \sim N(\mu_i, \sigma^2))$
- 2) Error is normally distributed, error variances are equal $(U_i \sim N(0, \sigma^2))$

Each sample in drown *independently*, *randomly* from a *normal population*

(02 marks)

(iv) Compute the test statistic and state its probability distribution. (02 marks)

$$TS = \frac{32.85}{16.91} = 1.94$$

Its probability distribution is $TS \sim F_{(k-1)(N-k)} = F_{2,11}$

F distribution with df 2, 11

- (v) Perform the test at 5% significant level to determine whether mean proficiency levels of three training programs are the same.
 (02 marks)
 - V. TS=1.94,

 $CV = F_{2,11,0.05} = 3.98$

As TS<CV, we do not reject H0 at 5% significance level

Separiment of Examinations

Not enough evidence to say that the training programs affect the employee's means proficiency levels.

Appendix

(3) d

2017 46 40 39 38 40.75 2018 38 34 32 25 32.25	Year	Ι	II	III	IV	yearly average	2
2018 38 34 32 25 32.25	2017	46	40	39	38	40.75	<i>S</i> .
	2018	38	34	32	25	32.25	_
2019 51 28 28 33 35.00	2019	51	28	28	33	35.00	-

				·
2017	$\frac{46}{40.75} \times 100$	$\frac{40}{40.75} \times 100$	$\frac{39}{40.75} \times 100$	$\frac{38}{40.75} \times 1$
	112.9	98.2	95.7	93.3
2018	$\frac{38}{32.25} \times 100$	$\frac{34}{32.25} \times 100$	$\frac{32}{32.25} \times 100$	$\frac{25}{32.25} \times 1$
	116.0	105.4	99.2	77.5
2019	$\frac{51}{35} \times 100$	$\frac{28}{35} \times 100$	$\frac{28}{35} \times 100$	$\frac{33}{35} \times 10$
	145.7	80.0	80.0	94.3
Total	374.6	283.6	274.9	265.1
average	124.87	94.53	91.63	88.37
Seasonal Index	125	95	92	88
86 ₃₇	1		1	